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FRACTURE MECHANICS AND CONTACT PROBLEMS 
IN MATERIALS INVOLVING 

GRADED COATINGS AND INTERFACIAL ZONES 

ABSTRACT 

Continuously grading the thermomechanical properties of materials is becoming a 

powerful tool in designing new materials for specific applications. Even though the 

potential application of the concept is very nearly unlimited, in the near future most likely 
fields of application of graded materials appear to be high-temperature components, load 

transfer components, components with high impact resistance and improved bonding 
strength, and thermoelectric cells. Thus, the primary objectives of this research program 
have been to identify specific fracture and contact problems the solutions of which are 
needed in the relevant failure analysis, to develop the necessary analytical and numerical 
methods for solving these problems, and to provide meaningful benchmark solutions in 

each area identified for investigation. Particular emphasis in the program has been on the 
investigation of failure-oriented problems. Considering the present and future 
applications, the main research efforts are therefore, concentrated on fracture mechanics, 
contact mechanics and elastodynamics of graded materials. In this report after presenting 
the necessary review and background information on the application of graded materials, 

the objectives of the research program and the summary of a series of benchmark 
solutions in the fields of fracture and contact mechanics involving graded coatings and 
interfaces are described. 



1. Functionally Graded Materials - A Brief Introduction and Potential Applications 

To meet the highly stringent demands of future technologies in power generation, 

transportation, aerospace and microelectronics, in current research a greater emphasis will 

have to be placed on material design, more specifically, on developing new materials or 
material systems tailored for specific applications. Generally such materials tend to be 

composites and intermetallics with homogeneous bulk properties. The composites may be 

fiber or filament-reinforced, particulate or layered in structure. Many of the laminated 

materials, thin films and coatings also fall into this category. A common feature of 

composites is that they consist of bonded dissimilar homogeneous materials. 

Consequently, in studying the mechanics, particularly the failure mechanics of such 

materials, the structure of interfaces or interfacial regions would play an extremely 
important role. From a mechanics stand point material property discontinuities across the 
interfaces have generally two undesirable features, namely higher stress concentration and 
weaker bonding strength. To circumvent these difficulties, the interfacial regions are 
modified by introducing a third medium along the interface in the form of an interlayer, by 
mechanically roughening the contacting surfaces or by using chemical coupling agents. 

A relatively new alternative concept which may be used to overcome some of the 
shortcomings of bonded dissimilar homogeneous materials, particularly that of the layered 
materials would be the introduction of interfacial regions or coatings with graded 
thermomechanical properties [1-7]. Thus, by varying the volume fractions of the 
constituents in the coating or the interface from zero to one hundred percent, and thereby 
obtaining a continuous through thickness thermomechanical property variation, it is 
possible to obtain not only smoother stress distributions and lower stress concentrations 
[8], but also higher bonding strength [9]. For example, in [8] it was shown that the points 
of intersection of free surfaces and interfaces between dissimilar materials are points of 
stress singularity and, consequently, potential locations of debonding fracture initiation. 
On the other hand, if the sharp interface is eliminated by introducing a graded layer, the 
singularity disappears and the stress distribution becomes considerably smoother [8,10]. 

In many deposition and bonding processes used in ceramic coatings it is difficult to 
obtain the desired strength for the interfacial zones. This is due largely to poor adhesion 

and partly to high stress concentrations. The adverse influence of both of these factors can 
be reduced significantly by introducing a graded interfacial zone between the two 

materials. The technique can be particularly useful for material pairs in which bonding is 

inherently difficult. For example, in [9] it was shown that a diamond film deposited over a 
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50/50 W/Mo alloy by using a DC plasma jet, the bonding strength obtained was less than 

10 kg/cm2. On the other hand if a graded interfacial zone is introduced by first plasma 

spraying the substrate with tungsten carbide and then gradually adding increasing amounts 

of methane and hydrogen before growing the diamond film, the adhesive strength was 
measured to be over 150 kg/cm2. 

These mostly particulate composites with continuously varying volume fractions are 

called functionally graded materials (FGMs). By controlling not only the composition 

profile but also the microstructure, the concept of FGMs could provide a great deal of 

flexibility in material design. As the processing techniques improve, the potential for 
special applications of FGMs appear to be nearly unlimited. However, in the immediate 

future the primary application of these materials will most likely be limited to thermal 

barrier coatings, tribology (with wear and corrosion-resistant coatings), abradable seals, 
impact-resistant structures, and thermoelectric cells. In the remainder of this section these 

potential applications of FGMs will be briefly described. The primary objectives of the 
research program will be outlined in Section 2. 

1.1 High Temperature Applications 

Within the past decade considerable progress has been made in using ceramic coatings 
to protect metallic components from high temperatures. These thermal barrier coatings 
(TBCs) are currently being used in conjunction with air cooling to prolong the life of hot 
section turbine components in aircraft engines. The application of ceramic TBCs also 
offers the possibility of increasing the thermodynamic efficiency of landbased turbines by 
increasing the inlet temperature of gases. TBC technology is thus considered to be a 
viable means for developing more efficient aircraft engines and stationary gas turbines. 

There are, however, several major technical issues involving the next generation of TBCs 
that need to be addressed: (a) improvement in processing techniques from both economic 
and performance standpoints, (b) understanding the failure mechanisms of TBCs in 
simulated and actual turbine environments and developing the appropriate techniques for 

their modeling and analysis, and (c) developing thermomechanical material 
characterization and test methodologies to measure the material properties necessary for 
the application of life prediction models. 

The current approach for accommodating the material property mismatch between the 

ceramic coating and the metallic substrate is to make the ceramic layer to be more 

compliant or strain-tolerant by introducing a segmented columnar structure (or in some 
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cases pores or microcracks). The difficulty with this solution is that the particular 

microstructural features that provide compliant coatings also provide rapid diffusion paths 

for oxygen. The experience seems to indicate that by far the most critical factor limiting 

the performance of the state-of-the-art TBCs is the spallation of ceramic layers which take 

place either along a plane parallel to the ceramic/oxide layer interface (as in plasma spray 

coatings) or bond coat/oxide interface (as in coatings processed by using electron beam 

physical vapor deposition). Usually a micron-thick oxide layer (generally A1203) forms 

between the bond coat and the top coat during processing. It then gradually grows during 

operation as the system is subjected to sustained high temperature until most of the 

aluminum in the bond coat is depleted. Thus, the life of TBCs seems to be controlled by 

the number and exposure time of thermal cycles and the process of local initiation, growth 

and coalescence of micro cracks. 

The main desirable characteristics of an ideal TBC appear to be low conductivity for 
thermal insulation, high coefficient of thermal expansion to match that of the metallic 
substrate, and high resistance to oxygen diffusion. It is highly unlikely to find all these 
favorable properties in a single material. Many of the well-known ceramics have either 
high conductivity and low oxygen diffusivity or low conductivity and high oxygen 

diffusivity. To prevent oxygen diffusion at some point a layer of A1203 or mullite (A1203 

2Si02) may be needed. However, these materials have considerably higher thermal 
conductivity than that of, for example, YSZ (ytria-stabilized zirconia). Thus, the problem 
appears to be an optimal design of a multi-layered structure, including graded interfacial 
zones and coatings. 

Typically, the current design of TBCs consists of a partially stabilized zirconia coating 
deposited on an intermediate metallic bond coat (e.g., NiCrAlY) which is plasma sprayed 
on the (superalloy) substrate [7]. The main function of the bond coat is to protect the 
substrate against oxidation. It also helps to reduce thermal expansion mismatch between 
the ceramic coating and the metallic substrate, and provides the surface texture needed to 

improve bonding. At high temperatures an oxide (A1203) scale is formed along the PSZ- 
bond coat interface. Even though this A1203 layer forms an oxygen diffusion barrier, it 

also introduces a weak cleavage plane which, under thermal cycling may lead to 
spallation. This difficulty may be overcome by introducing a graded (NiCrAl2Y-PSZ) 
layer between the bond coat and the ceramic layer [7]. 

The basic premise behind using the FGM concept is that by replacing sharp interfaces 

with graded interfacial zones or by replacing homogeneous ceramics layers with graded 



metal/ceramic composites, it is possible to improve the resistance of the coating to 

spallation as a result of reduced stress levels and improved bonding strength. 

A broad outline of the benchmark problems studied in this area is presented in Section 

4. The details of these studies are described in Appendices A, B and C and in the 
Technical Project Reports [10], [11], [12] and the Article [13]. 

1.2 Tribology - Contact Mechanics 

An obvious application of ceramic coatings seems to be to provide the necessary 

hardness or wear resistance to the surfaces of structural components transmitting forces 

through contact such as gears, bearings, cams and machine tools. Intuitively, it is clear that 

the fatigue life of these components may be improved quite considerably by using graded 
rather than homogeneous ceramic coatings on the main load-bearing metallic substrate. In 
these load-transfer components FGM coatings would provide the necessary surface 
hardness without sacrificing toughness. 

A wear related application of FGM coatings or interfacial zones may be found in 
abradable seals used in some stationary gas turbines to help minimize the gas leakage 
through the gap between the tips of the rotating blades and turbine shroud. Here the main 

components in the shroud are the metallic structure or the substrate, the bond coat, a layer 
of high density ceramic and a layer of very low density ceramic with a graded zone 
replacing every sharp interface [14]. The underlying mechanics problem is again a contact 
problem and the primary desirable material property requirements are toughness and 
abradability. 

In the past wear and corrosion resistant coatings have been used quite extensively in 
industrial machinery. Coating materials have been metals such as stainless steels, Mo 
based alloys and WC-Co as well as ceramics such as A^C^/NiCr have been extensively 
used in aircraft industry to coat various turbine/compressor components and mid-span 
stiffeners for improved wear resistance. Other applications of wear-resistant coatings have 
been in printing rolls, steel mills, petrochemical industry and transportation industry. Most 

of these coatings have been deposited by using a thermal spray technique. Since thermal 

spray processes are readily suitable for composition grading, service life improvement can 
be obtained in all applications of wear and corrosion-resistant coatings by using the FGM 
concept. 

The basic mechanics of crack and contact problems associated with the failure of wear 
and corrosion-resistant coatings and abradable seals is described in Section 3 of this 
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report. The analytical details and extensive results for the contact problems in FGM 

coatings are presented in the Technical Report [15]. 

1.3 Cracking Due to Sliding Contact 

Many of the present and potential applications of FGMs involve contact problems. 

These are mostly the load transfer problems in deformable solids, generally in the 

presence of friction. From the standpoint of failure mechanics an important aspect of 

contact problems is the surface cracking which is caused by friction forces and which 

invariably leads to fretting fatigue. In most applications material property grading near the 

surface is used as a substitute for homogeneous ceramic coatings. In both cases, that is in 

both homogeneous and graded coatings the surface of the medium consists of 100% 
ceramic which is generally a brittle solid. Hence, the "maximum tensile stress" criterion 
may be used for crack initiation on the surface. Once the crack is initiated, its subcritical 
growth under repeated loading by a sliding stamp is controlled by stress intensity factors 
at the crack tip. The main objective of this study is, therefore, the evaluation of peak 

tensile stresses on the surface for the purpose of studying crack initiation and the stress 
intensity factors for modeling subcritical crack growth. Specifically, the objective is the 
examination of the influence of friction coefficient and material nonhomogeneity 
parameters on the peak surface stresses and stress intensity factors. The problem is 
considered under the assumption of plane strain, Coulomb friction and linear 
nonhomogeneous elasticity. 

The details of the analysis and very extensive results for the coupled crack/contact 

problems involving homogeneous and graded materials are presented in the Technical 
Project Reports [16] and [17], respectively. A brief introduction of the problem and some 
results may also be found in Appendix C. In all these studies the emphasis has been on 
examining the influence of the material nonhomogeneity constants and the friction 
coefficient on the surface crack initiation stress and crack tip stress intensity factors. 

1.4 Impact Resistance - Wave Propagation in Graded Materials 

A first step in studying the failure mechanics of structural components usually is a 
detailed stress analysis for identifying the likely sites of failure initiation and for 

determining the peak values of stresses. In some cases the loading of these 
nonhomogeneous components may be dynamic in nature. Thus, an important area of 
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interest in considering the applications of graded materials would be to study the dynamic 

response of the component to, for example, impact or blast loading. In elastodynamics of 

materials with continuously varying properties, usually the pulse shape is distorted in 

time, the wave propagation speed is not constant, and there are no sharp interfaces that 

would cause wave reflections. Consequently, even in the simple case of one-dimensional 

wave propagation the locations and magnitudes of peak stresses can not be determined by 
inspection. 

Because of its relevance in geophysics and soil mechanics, in the past there has been 

quite considerable interest in elastodynamics of nonhomogeneous media. In 1946 

Friedlander [18] proposed a solution that consists of a series of terms the first of which 

describes the wave motion predicted by geometrical optics and the subsequent terms 

account for certain types of diffraction effects. Karal and Keller [19] extended this method 

to treat general wave propagation problems in nonhomogeneous elastic media by 
formulating the problem in terms of displacements and displacement potentials. Pekeris 
[20] used an asymptotic method to solve the problem for a half-space with a variable 
speed of sound and reduced the solution to Fourier-Bessel series. Since then geophysics- 

oriented contributions to the field have been quite voluminous. 

Among many others, there are two important reasons for studying the problem of 
wave propagation and impact in FGMs. The first is the interpretation and analysis of 
possible nondestructive testing and evaluation results. The second is related to service life 
and reliability of FGM components, specifically, to the evaluation of peak stresses for the 
purpose of spallation studies. A one-dimensional benchmark problem was considered in 
[21] 

1.5 Thermoelectric Cells 

In many conductors generally the electrical current and the thermal flux are coupled. 
This coupling can be used, in principle, to construct refrigerators or electric power 
generators. A temperature difference AT across any conductor would generate a voltage 

AV. Generally S = AV/AT is a measure of the efficiency of the device where S is the 
Seebeck coefficient. A commonly known such device is the thermocouple. The efficiency 

of the device is also dependent on thermal conductivity k and electrical resistivity p. Thus, 
it has been shown that the dimensionless constant defined by Z = TS2/kp is the measure 

of device efficiency at temperature T{K), where Z is known as the figure of merit. Most 
metallic materials have very small values of Z and, consequently, are not suitable for 
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thermoelectric cell applications. The group of materials most suitable for refrigeration as 

well as power generation appears to be certain doped semiconductors [22], [23]. Some of 

the typical applications for thermoelectric devices are power for deep space probes, 

remote weather stations, and underwater and remote navigational systems in power 

generation area and spot cooling of electronic devices, infrared and X-ray detectors, fiber 
optic laser packages, and computer central processing units in refrigeration area. 

In semiconductors suitable for thermoelectric cell application, the figure of merit is 

highly temperature dependent. In a typical temperature range such as 300 - 1000 (K) the 

use of a single material would be very inefficient. Thus, to optimize the power efficiency a 

layered material is necessary. This result of increasing overall device efficiency can be 
best accomplished by using bonded dissimilar materials containing many layers each 

operating near its optimum temperature. To a lesser extent, it can also be accomplished by 

using a single semi-conductor with graded dopant concentration. In either case, the 
underlying mechanics is one of bonded dissimilar materials with stress-free surfaces 
subjected to steep temperature gradients. Here, because of stress singularities, debonding 
is a common mode of failure. It is, therefore, clear that, from the viewpoint of failure 
mechanics as well as device efficiency, the FGM concept is very highly suitable for 

application to thermoelectric cells. 

2. Objectives of the Research Program 

The primary objectives of this research program on the fracture and contact mechanics 
in graded materials have been 

• To identify specific crack and contact problems the solutions of which are needed 

in the relevant failure analysis 
• To develop the necessary analytical and numerical methods for solving these crack 

and contact problems 
• To examine the singular behavior of crack, contact and coupled crack/contact 

problems in FGMs and compare them with the corresponding results in 

homogeneous and piecewise homogenous materials 

• To provide meaningful analytical benchmark solutions in each area identified for 

the investigation 



A particular emphasis in the research program has been on the investigation of failure- 

oriented problems. Thus, considering the present and potential applications of the graded 

materials, the main efforts were concentrated in the following three specific areas: 

• Fracture mechanics of graded materials 
• Contact mechanics of graded materials 

• Elastodynamics of graded materials 

In general the results of the research program are intended to provide technical 

support for material scientists and engineers who are trying to develop techniques for 

processing new graded materials with certain desirable properties and for design 

engineers who are interested in their applications. Also, the analytically obtained 

singularities and benchmark solutions are intended to help the development and testing of 

new finite element models for solving more complex problems involving fracture and 
contact mechanics of graded materials. 

3.   Fracture and Contact Mechanics: Basic Concepts 

In this section the basic concepts of fracture and contact mechanics in graded elastic 
solids are very briefly described. 

3.1 Fracture Mechanics of Graded Materials: Basic Concepts 

In a broad sense "fracture" is the creation of new surfaces in solids. The fundamental 
criterion of fracture initiation and propagation is based on the energy balance concept. Let 
the solid contain a dominant flaw which is usually considered to be a planar crack of 
surface area A. Under given external loads if the crack grows by an amount dA in time 
dt, the thermodynamic equilibrium of the solid requires that 

W_WdTdD 
dt ~ dt + dt + dt' (1) 

where U, V, T and D respectively are the work of the external loads, the recoverable 
internal energy, the kinetic energy, and the sum of all dissipated energies such as surface 

tension, plastic work, viscous dissipation, etc. If the energy dissipation takes place only 



around the advancing periphery of the crack, in a quasi-static case T is negligible and 

defining dD/dA = Gc (1) may be expressed as 

±(U-V) = GC. (2) 

In the fracture criterion given by (2) the left hand side is the energy available and Gc is the 

energy required to create a unit area of new fracture surface. They are also known as the 

crack driving force and the fracture toughness, respectively. By using the concept of 

crack closure it can then be shown that the increment d(U - V) of the energy available 

for fracture may be evaluated from the asymptotic stresses and the crack opening 

displacements near the crack tip which, in homogeneous solids, may be obtained from the 
three dimensional elasticity solution as follows: 

aiz(r,e)^^=f3i(6),    (i = x,y), (4) 

,        _      2(1-*/2),     /— ,        _      2(1-i/2) 2\ 
v^ - v~ £    s        ' )k1\/r2r, u+ -u~ e* Z^     V }hi\plr, (5) 

hi E 

w ■+-w~^— y/2r, (6) 

where fei, k2 and k3 are the modes I, II and IQ stress intensity factors, fuj, f2ij and /3i are 
known functions and E, v and fj, are the elastic constants, E = 2/i(l + u). From the 
crack closure energy it may then be shown that 

<*i -  ^ «n ^2 ^ «2, Cr3 = —/s3, (7) 

G=^(C/-^) = G1 + G2 + G3, (8) 

where G is total energy available for fracture. 

Equation (7) indicates that one may also use ki in place of G* as the measure of the 
crack driving force. For mode I loading conditions, for example defining 

Ä> = *iV^,        Glc = GIC, KIC = y/GICE{l -1/2), (9) 
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the fracture criterion (2) may be expressed as 

Kj < Kw. (10) 

Equation (10) has proved to be very useful in considering the fracture stability. 

However, perhaps the most useful application of the stress intensity factors may be found 

in analyzing the subcritical crack growth processes. 

In studying the fracture mechanics of graded materials one may have to deal with a 

number of distinct singularity problems. The first is the investigation of the nature of 

stress singularities near the tip of a crack embedded in a nonhomogeneous medium. The 

second is the general problem of debonding and the effect of a possible "kink" in material 

property distributions on stress singularities. And the third is the basic surface cracking 

problems and the nature of the stress singularities for cracks intersecting the interfaces. 

To examine the influence of the material nonhomogeneity on the asymptotic stress 

state near the crack tips, we first consider the plane elasticity problem for an infinite 

medium containing a line crack. For simplicity we will assume that the Poisson's ratio v of 

the medium is constant and the shear modulus is approximated by 

fj,(x, y) = /i0exp(/?z + yy), (11) 

where /J,Q, ß and 7 are known constants. This problem was solved for a crack along 

y — 0, — a < x < a, under arbitrary loading conditions [24]. It was shown that near the 

crack tip x — a the stresses have the following asymptotic behavior: 

<rij(x, y) = exp(r(/?cos(0) + 7sin(0))) kl /iy(*) +-7=/»^) 

where the stress intensity factors k\ and k2 are defined by 

, {i,j = x,y),   (12) 

ki(a) — limi/2(a; - a)ayy(x, 0),      /^(a) = limA/2(x — a)axy(x, 0), (13) 
x-+a x—*a 

and the functions fuj and J2ij are identical to those found for the homogeneous materials 

given in (3). Note that the asymptotic stress states for homogeneous materials (3) and 

FGMs (12) are identical only at r = 0. However, since the crack opening displacement is 

also influenced in a way similar to stresses, the crack driving force (or, for "fixed grip" 

conditions, the strain energy release rate) was found to be identical to that calculated for 

the homogeneous materials, namely 
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where K = 3 - 4v for plane strain and K = (3 — ^)/(l + ^) for plane stress conditions. 

For results regarding the stress intensity factors in FGMs see [12], [13] and [24], [30]. 

3.2 Debonding Problems in Graded Materials 

Consider the crack problems shown in Figs, la and lb. Figure la describes the 

debonding problem in piecewise homogeneous materials, whereas Fig. lb refers to an 

FGM bonded to a homogeneous substrate. In both cases h = 0 refers to an "interface 
crack". In terms of the unknown functions 

/i(x) = £(t/+ - if), Mx) = §-x{u+ -«-), (15) 

in each case the formulation of the problem may be reduced to a system of integral 

equations of the form 

" J—a   i    L 

1/i(*)d* = ^T7^Ä(*).(< = l,2) 
6ij  + klfat) + *£OM) 

x 2^i(0)J 

— a < x < a, (16) 

where the kernels fey are known functions which depend on h and material parameters, fe^ 

is associated with the infinite medium, k{j represents the geometry of the medium, and 

Pi(x) = <Tyy(x, 0), pi(x) = axy(x, 0), (17) 

are the crack surface tractions which may be expressed in terms of the external load. The 
kernels fe£ are bounded for all values of h. For h > 0 the functions fe? are also bounded. 

Thus, for h > 0 the crack is an embedded crack and (16) would lead to the asymptotic 
stresses given by (3) and (12) for problems described by Figs, la and lb respectively. On 
the other hand, for h = 0 in problem la the kernels fefa and fc|2 would become a Cauchy 

kernel (t — x)~l and fef2 and fe^ would degenerate to a delta function 6(t - x) [31,32]. 
Consequently, in this interface crack problem the integral equations become one of the 

second kind leading to the well known anomalous stress oscillation behavior very near the 
crack tips. 
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For h = 0 in problem lb, however, the leading terms of the kernels k^ become 

us  _ us  _ _ H* ~ x\ 
kn - *» _       8(t - x) ' 

*i2 = - Ki = Jlog|t - s|,        7 = tan(0o), (18) 

which would indicate that (16) would remain to be an ordinary system of singular integral 

equations, of the first kind and would have the asymptotic solution given by (12). It is, 

therefore, seen that the anomalous behavior of the crack tip stress oscillations may be 

eliminated by "smoothing" the material property distribution (or by removing the property 

discontinuity). A qualitative description of the interface crack geometries and the singular 

kernels k^ may be seen in Fig. 2. 

3.3 Cracking Perpendicular to Interfaces and Surfaces 

In ceramic and ceramic/metal FGM components generally a common mode of failure 

is surface cracking which could penetrate to the interface and cause debonding. The main 
problem here is assessing the influence of material nonhomogeneity on the fracture 
mechanics parameters (such as G and k{) for surface cracks and cracks terminating at an 
interface. Figures lc and Id show the crack geometry for the latter problem in piecewise 
homogeneous and in nonhomogeneous materials. Because of symmetry, generally these 
are all mode I problems. Thus, if we define the unknown function and crack surface 
traction by 

g(x) = -JT-(V(X, + 0) - v(x, - 0)),      p(x) = cryy(x, 0),       a < x < b, (19) 

the integral equation for the general problem may be expressed as 

-/     +ks(x,t) + kf(x,t)]g(t)dt =-——tp(x), a<x<b, (20) 
KJa   It-"" x 2/i2 

where, again ks is associated with two bonded semi-infinite media and kf represents the 
geometry of the composite medium and is always bounded. For an embedded crack, a > 0 

and ks is also bounded. However, for a = 0, ks could be singular. In fact, for a = 0 in 

piecewise homogenous materials (Fig. lc) it is known that 
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ks(x,t) = -^- + -^ + 7^-z,     0< («,*)<&, (21) 
t + X        (t + X) (t + X) 

where ci, c2 and c3 are bimaterial constants [33]. Note that as t and x approach the end 

point x = 0, ks tends to infinity and, hence, would contribute to the singular behavior of 

the solution giving 

<^'M) = ^9ij(0),       0 < 0 < TT, (i,j = x,y),       0 < a < 1, (22) 

where ^ are known functions, fei is a "stress intensity factor" and the power of stress 

singularity a > 1/2 for /x2 > /^i and a < 1/2 for ^2 < /xi, a = 1/2 being the value for 

H2 — Mi- From the viewpoint of fracture mechanics, the consequence of having a^ 1/2 is 
that as the crack intersects the interface, the stress and deformation states would not 
remain self-similar and, hence, it would not be possible to use the fracture theories based 
on the energy balance concept to calculate a strain energy release rate or to use the stress 
intensity factors as the crack driving force. This, then, is the second anomalous behavior 
regarding the stress state near the crack tip in bonded dissimilar homogeneous materials. 

If we now "smooth" the material property distribution and assume that medium 1 is a 
graded material (Fig. Id), it can be shown that for a — 0 the leading terms of ks become 

[34] 

ks(x,t) - g- + -^L + J&    + d,\og(t + x), (23) 
t + x       t + X       (t + X) 

where, d\,...,d± are bimaterial constants. Note that the kernel given by (23) is square 
integrable and, therefore, would have no contribution to the stress singularity at x = 0. 
Consequently, the stresses would have the standard square-root singularity and, by 
smoothing the material property distribution through the introduction of material property 
grading, the anomalous behavior of the stress state would again be eliminated. 

Figure 3 shows the mode I stress intensity factor for a = 0 and p(x) = — Oo in Fig. 

Id. The normalized stress intensity factors shown in the figure are defined by 

k(a) = fc1(0)/aoV
/V2, k(b) = h{b)/aQy/bß, (24) 

&i(0) = lim\/ — 2xaiyy(x,0), fci(b) = limi/2(x - b)(722/y(x,0). (25) 
x—>0 x—>b 

The shear modulus of FGM in Fig. Id is assumed to be 
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A«i(z) = ^exp(^x), (26) 

where //2 is constant. It is thus seen that for ß -* oo, ßi —»• 0 and the problem becomes an 

ordinary edge crack problem in a homogeneous half space for which 

fci(0)-+oo,   h{b) -> 1.5861aoV&/2. (27) 

For /? = 0 the medium is homogeneous and 

MO) = *i(6) = (70 v/572. (28) 

In the other limiting case of ß = — oo, pii becomes infinite and for the resulting problem 

of a crack terminating at the interface we have 

Jfei(0) -♦ 0,     h(b) -► 0.8710(7oy/b/2. (29) 

The analytical details and further results for this problem may be found in [33]. 

3.4 End Effects 

Generally the stress-free ends in bonded materials are locations of high stress 
concentrations and potential debonding fracture. In bonded dissimilar homogeneous 
materials the point at which the interface intersects the free boundary (or the apex of two 
90-degree bonded wedges) is, in fact, a point of singularity near which the stress state is 

given by [35] 

°ij(r,6) =-^Fitf),       (i,j = x,y),   0 < ß < 1/2, (30) 

when (r, 6) are the polar coordinates, ß and F»j depend on the bimaterial constants and K 

is a measure of the load amplitude or stress intensity. For ß to be positive the material 
properties need to be discontinuous across the interface. In FGM coatings, since the 
material properties are made continuous through composition grading, it can be shown 
that the singularity ß becomes zero and consequently, the stresses become finite. 

3.5 Contact Mechanics of Graded Materials: Basic Concepts 

The contact mechanics for a graded elastic medium acted upon by a rigid stamp of 
arbitrary profile is described in the Technical Project Report [15]. In the most general case 
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of two elastic nonhomogeneous solids in contact in the presence of friction, the integral 

equation of the problem may be expressed as follows: 

Ap(x) + - [ -pQ-dt + /   k(x,t)p(t)dt = f{x), a<x<b, (31) 
irj-at-x        J_a 

f j — i 

p(t)dt = P, (32) 

,-,Y«+(o)-i    «"(Q)-n      P^K+(O) + I   «-(o) + i 
77V  4M

+(0) 4/*-(0)   J' 4^(0)    +   4A*"(0)   ' W 

where P is the resultant compressive force, p(x) = - 0^(2:, 0), and 

g(z) = T)p{x) = - tr^x, 0) are the contact stresses, 77 is the coefficient of friction, 

ß+(y), K+(y), fi~(y), K~(y) are elastic parameters of the contacting solids and 
- a < x < 6, y = 0 is the contact area, Fig. 4. It is assumed that the curvatures of the 

contacting solids near the contact zone are smooth a + b = l < < Ri where Ri and i?2 

are the radii of curvature, and both curvatures may be positive or one may be negative. 
Defining, now the sectionally holomorphic function 

and by using the Plemelj formulas 

F+(x)-F-(x)=Hip^ -a<x<b w w      \0, - 00 < x < - a, b <x <oo (35) 

F+(x) - F-{x) = I vJ_aT^x-dt' ~a<x<b (36) 

— 00 < x < — a, b < x < oc 

the fundamental solution and the fundamental function of (31) may be obtained as follows 

X{z) = {z-bnz + af, (37) 

w(x) = (b - x)a(x + a)ß, (38) 

a=2^l0g(^T7l)+;v' -1 <*")<!.       <39> 
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In (39) and (40) JV and M are arbitrary positive and negative integers or zero. The index 

of the problem is defined by 

«0= -(a + ß)= -(N + M). (41) 

In the problem under consideration the index is + 1, 0 or - 1 and is determined from 

physical considerations. From (39) and (40) it may be seen that 

a= -i + N,    ß = - + M,        6 = arctan(£/A). (42) 
7T 7T 

After determining the fundamental function w(x), the solution (36) may be expressed 

as 

p(x) = g(x)w(x), - a< x <b, (43) 

where g(x) is an unknown bounded function and is dependent on the geometry and 

material properties of the contacting media. The arbitrary constants N and M are 
determined in such a way that, for example, at the end point x = 6, 9ft(a) > 0 if the 
contact is smooth and K(a) < 0 of one of the contacting solids has a sharp corner 

(implying stress singularity). 
It is important to observe that in contact problems involving graded materials the 

fundamental function w or singularities a and ß are independent of the material 
nonhomogeneity parameter and are dependent on the coefficient of friction rj and the 
surface values of the elastic constants /x+, K

+
, \T and K~ of the contacting surfaces. 

Figure 4 shows an example for the surface stress distributions and the resultant force 

P vs the contact length in two contacting elastic cylinders coated by graded layers. In this 
example rj = 0.3 and ayy and axx are stresses on the surface y = 0 of the cylinder 1. The 

stiffness distributions are exponential, namely /^(y) = Ai2oexp(72y), 

Atad/) = A*3oexp(732/), \i\ = M2O2), H = Ps{ ~ h*)- 

4.  Fracture Mechanics of Graded Materials / Benchmark Solutions 

In this section a summary of benchmark problems relating to the fracture mechanics of 

graded materials studied under the current research grant is presented. Nearly all results 
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are obtained analytically. The only exception is the investigation of various crack 

geometries in a thermal barrier coating system that consists a homogeneous substrate, a 

homogenous bond coat, a thermally grown oxide and a graded (metal/ceramic) top coat, 
(see Section 4.3 for a brief discussion and the Technical Project Report [36] for details). 

Similarly, nearly all results obtained in this project are described in detail in Appendices 

A, B, C, articles [13] and [21] and Technical Project Reports [10], [11], [12], [15], [16], 

[17] and [36]. Again, the exception is the analytical investigation of the homogeneous 

substrate, homogeneous bond coat and FGM top coat TBC system containing an interface 

crack and subjected to arbitrary symmetric loading. This study is currently in progress 
[37]. 

4.1 The Effect of Material Orthotropy in Graded Materials 

Generally, in FGM coatings the subcritical crack propagation and spallation related 

failures involve two types of cracks, namely a surface crack growing perpendicular to the 
boundary and a debond crack parallel to the interface. This is partly due to the fact that, 

because of the techniques used in processing, the graded medium is seldom isotropic and 
the crack planes mentioned usually correspond to the principal planes of material 

orthotropy and, consequently, to relatively weak fracture planes. For example, the 
materials processed by using plasma spray technique have generally a lamellar structure. 
Flattened splats and relatively weak splat boundaries provide an oriented material that has 
a higher stiffness and weaker cleavage planes parallel to the surface. On the other hand, 
graded materials processed by using an electron beam vapor deposition technique would 
invariably have a columnar structure, resulting in a higher stiffness in thickness direction 
and weaker fracture planes perpendicular to the boundary. Clearly, in studying the 
fracture mechanics of these materials assuming the medium to be isotropic would be 
rather unrealistic. A closer approximation would be to assume that the nonhomogeneous 
medium is orthotropic with the principal directions parallel and perpendicular to the 
boundary. 

In FGM coatings since the material property grading is usually in the thickness 

direction and dominant components of the residual and thermal stresses are generally 
parallel to the boundary, in the first crack problem of interest, namely in the surface crack 

problem the plane of the crack is a plane of symmetry in material properties as well as in 
loading. Consequently, the resulting problem is a mode I crack problem for an orthotropic 

nonhomogeneous medium. Such a problem is considered in [28] which is solved for fixed 
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grip loading away from the crack region and for polynomial crack surface tractions in 

order to accommodate more general loading conditions. It is assumed that x\ and x2 are 

the principal axes of orthotropy, the crack is located along x2 = 0, |a;i| < o and material 

properties vary in x\ direction only. In the crack problems for orthotropic 

nonhomogeneous materials analytically the problem is intractable if all material 

parameters are assumed to be variable. However, by replacing the four engineering 

parameters En, E22, Gx2 and vX2 by a stiffness parameter E = \fE\\E22, a stiffness 

ratio 8 = (En/E^)1^, a Poisson's ratio u — y/v^v-n and a shear parameter 

K0 = (E/2G12) - v, assuming that v is constant and the moduli En, E22, GX2 vary 

proportionately, and by using 8 as a scaling constant for the coordinates, stresses and 
displacements, it is shown that the problem becomes tractable and one can study the 

influence of the material orthotropy on the stress intensity factors and the crack opening 

displacement. The solution of mode I problem is given in [28]. Some of the main 
conclusions drawn from this study is that the results depend on the nonhomogeneity 
parameter a and the elastic constants v and K0 but not on E0 and 8, where 
E(x\) — E0exp(axi), and the stress component 022(2:1,0) and the mode I stress intensity 
factors at the crack tips x = ^a are invariant with respect to a 90° material rotation (see 

[28] for details). It is further shown that the results are relatively insensitive to the change 

inzA 
The mixed mode crack problem that provides a benchmark for debonding problems is 

considered in [13]. In this problem again the crack is located along x2 = 0, \x\\ < a and 
the same assumptions as in the mode I crack problem are made with regard to the material 
parameters and scaling. However, here it is assumed that the material properties vary in a 
direction perpendicular to the plane of the crack. Hence, the plane of the crack is no 
longer a plane of symmetry and consequently, the problem is one of mixed mode. The 
solution is obtained for polynomial crack surface tractions a22(xx,0) = a0(xi) and 
(Ti2(xi,0) = r0(xi), \x\ < a. The main calculated results are the modes I and II stress 
intensity factors, the strain energy release rate and the crack opening displacement. Other 
than the load amplitude, the primary variables are the material nonhomogeneity parameter 

a, the shear parameter K0 and the stiffness ratio 8. Again, the results are shown to be 
relatively insensitive to the variation in Poisson's ratio v. It is found that generally the 

stress intensity factors increase with increasing a and «0 and with decreasing 8. The main 
results are described in [13]. The general formulation and extensive results for the 
problem of collinear cracks in a graded medium are given in the Technical Report [12]. 
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4.2 Spallation of Graded Materials: A Penny-Shaped Crack 

The basic benchmark problem considered in Appendix A consists of a penny-shaped 

crack parallel to the surface of a semi-infinite graded medium. The problem is an 
axisymmetric mixed mode problem in which crack surfaces may be subjected to shear as 

well as normal tractions. The main objective of the study is to determine the influence of 

material nonhomogeneity constants and the dimensionless length parameter h/a on the 

stress intensity factors, where h is the distance of the crack from the surface and a is the 

radius of the crack. The problem is solved analytically by reducing it to a system of 

singular integral equations. The results are obtained for polynomial normal and shear 

tractions acting on the crack surfaces. As expected, generally the stress intensity factors 
increase with decreasing h/a and increasing material nonhomogeneity. In addition to 

results regarding the stress intensity factors, Appendix A also includes the corresponding 
crack opening displacements (for extensive details see [38]). 

4.3 Interface Cracking of Graded Coatings 

Various fracture problems in a basic TBC system that consists of a homogeneous 
substrate (SS), a homogeneous bond coat (BC), a thermally grown oxide (TGO) and a 
homogeneous or graded top coat (TC) are considered in [36]. Assuming that heating and 
cooling take place sufficiently slowly so that the time-dependent transient effects may be 
neglected and there are no mechanical loads, the problem is solved under a uniform 

temperature change (AT of the order 1000 °C). The basic crack geometries considered 

are axisymmetric and plane strain edge cracks at various locations parallel to the 
interfaces, plane strain surface crack propagating in and terminating at or crossing the 
interfaces between various layers, T-shaped crack branching from a surface crack and 
growing parallel to the interfaces at various critical locations and periodic cracks at the 

peaks of interface asperities between TGO and BC. Due to complexity of the problem, a 
finite element technique is used in its solution. An enriched crack tip element is used to 
simulate the asymptotic behavior of the stress and displacement fields at and near the 

crack tips and to evaluate the stress intensity factors. The detailed results may be found in 
the Technical Report [36]. 

An analytical benchmark solution for the interface crack problem is also being 

developed, in part, to verify the purely numerical results [37]. Here the TGO is neglected 
and it is assumed that the composite medium consisting of a substrate, a bond coat and a 
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graded top coat is under plane strain conditions, contains an interface crack between the 

TC and BC, and is subjected to arbitrary general loading conditions. The main results of 

this study will be the stress intensity factors, strain energy release rate and crack opening 

displacements. 

4.4 Buckling of Graded Coatings - A Continuum Model 

In structural components such as thermal barrier and other protective coatings 

spallation is a serious mode of failure. At high temperatures the medium is generally 
stress-free. Upon cooling, because of the mismatch in thermal expansion coefficients, the 

coating would be subjected to severe compressive stresses. In the final stages of the 

failure process, a highly weakened or fully cracked interface could then pose a buckling 

instability problem. Considered as a problem in linear elasticity, it is shown that for flat 
components the result would be trivial and in the presence curvature (as in, for example, 
turbine blades) highly misleading. The objective of this part of the project is to study the 
influence of geometric nonlinearity and curvature on the crack opening 6 and the strain 
energy release rate G. The example considered is shown in Fig. 5 a where (simulating a 
turbine blade at various locations) it is assumed that a ceramic-rich FGM coating of 

thickness hc = 130/im is bonded to a 3 mm thick superalloy substrate and the interface 
contains a 5.2 mm long crack. The loading is the temperature drop AT. Figs. 5b and 5c 
show, respectively, the crack opening 6 at the midpoint x = 0 and the strain energy 
release rate G at the crack tips x — ±a for various values of radius of curvature R. Note 
that for flat specimen (R = oo) the linear theory gives 6 = 0, G = 0 and the nonlinear 
model predicts a distinct instability load (ATcr = 450 °C). Also note that as R decreases 
the difference between the linear and nonlinear results becomes insignificant. The details 
of the analysis and extensive results are given in AFOSR Technical Project Report [11]. 

4.5 Surface Cracking in a Graded Medium under General Loading Conditions 

In this part of the project the problem of a plane strain surface crack in an elastic 
graded medium under general loading conditions is considered. It is assumed that first by 

solving the original thermomechanical problem for the graded material in the absence of a 
crack, it is reduced to a local perturbation problem with arbitrary self-equilibrating crack 
surface tractions. It is further assumed that the length of the surface crack is relatively 

small in comparison with the in-plane dimensions of the medium and, consequently, the 
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local problem may be approximated by that of a surface crack in a semi-infinite graded 

medium under known crack surface tractions. The local problem is then solved by 

approximating the known normal and shear tractions on the crack surfaces by 

polynomials. The main calculated results of the study are the modes I and n stress 

intensity factors and the crack opening displacements. As an application the results for a 

graded medium loaded by a sliding circular stamp with constant coefficient of friction is 

presented. The complete solution of the problem and extensive results are given in 

Appendix B. 

4.6 Cracking of a Graded Layer Bonded to a Homogeneous Substrate 

This is the basic FGM coating problem in which various collinear internal and surface 

cracks in a homogeneous elastic substrate coated by a graded layer under arbitrary 
mechanical and thermal loadings are investigated. The thermo-mechanical properties of 
the FGM coating are assumed to vary exponentially with the thickness coordinate. The 
equilibrium equations are solved using integral transforms. The resulting singular integral 

equations are solved using numerical integration. The results of interest for this mode I 
formulation are the stress intensity factors and the crack opening displacements. The 
effects of the nonhomogeneity parameter and various dimensionless length parameters are 

studied. 
One of the most important outcomes of this study is the theoretical proof that a "kink" 

in material property at the interface does not introduce any singularity. In the numerical 

results it is observed that generally the stress intensity factors tend to increase with 

material nonhomogeneity. Also, it is observed that the substrate thickness tends to 
suppress cracking in the coating. In pure thermal loading, the surface cracks may either be 
arrested or there might be crack closure. The stress intensity factors from different 
loadings can be added up to obtain the resultant stress intensity factor for multiple 

loading. 
Some interesting and important results are obtained from thermal loading of the 

surface crack problem in which near and at the free surface crack closure may occur and 
the problem becomes nonlinear. In the examples considered a simple iteration scheme is 

used to solve the problem. 
Results in this study have wide-ranging applications. They can be applied to thermal 

barrier coatings on turbine components, combustion chambers, parts of the airframe for 

the "Space Plane", soil mechanics, bone fractures and many more applications where the 
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material is macroscopically nonhomogeneous. Thus this study solves a basic problem 

common to a variety of applications in diverse fields. 
The analytical details, numerous examples and extensive results are given in AFOSR 

Technical Project Report [10]. 

5.  Contact Mechanics of Graded Materials / Benchmark Solutions 

5.1 Basic Contact Mechanics Problems in FGM Coatings 

One of the potentially important applications of graded materials involves protective 
coatings against mechanically applied loads. In these load transfer applications, because 
of the possibility of fretting fatigue, the friction plays a particularly important role. 
Grading the surface coating adds another dimension to the design of load transfer 

components in order to optimize their performance. Keeping in mind the likely 
applications of FGM coatings in load transfer components in the immediate future, the 
related problems in contact mechanics may be studied under two broad categories: (a) a 

rigid stamp with an arbitrary profile acting on a homogeneous elastic substrate with FGM 
coating and (b) two FGM-coated elastic media with arbitrary but smooth profiles that are 
in contact. As a practical example for the first group of contact problems one may mention 
the abradable seal design in stationary gas turbines. In this case the shroud is coated by a 
low density metal/ceramic FGM and in order to prevent gas leakage (and consequently to 
increase the efficiency) the blades are allowed to touch the coating. The repeated loading 
may directly result in fretting fatigue. Cylinder linings and brake disks may be mentioned 
as other applications of the concept. A typical example for that group of problems is 
shown in Fig. 6 where the distribution of contact pressure <ryy(x, 0) and the in-plane 
component of the surface stress axx(x, 0), and the dependence of the resultant force P on 
the contact area are given for various values of the stiffness ratio T3 = /X4//i3o, ^4 ano^ 
^30 being the shear moduli of the substrate and coating on the surface respectively. 

The main practical applications of the second group of contact problems are gears, 

bearings, cams and possibly large earth moving and other construction equipment. In this 

case specially designed FGM coatings may be used to reduce wear and to increase the 

fatigue life. The general contact problem is formulated and extensive results are obtained 
for various geometries and material nonhomogeneity parameters of the contacting solids. 
In order to address a possible microcrack inititation on the surfaces of the contacting 

FGM coatings, the stress state axx on the surfaces within and outside the contact regions 
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are also calculated. A typical example for the contacting elastic solids coated by graded 

layers is shown in Fig. 4 again for various values of the stiffness ratios T2 and T3. 

The general formulation of the problem, the details of the analysis and extensive 

results for various typical stamp profiles, namely the flat, circular, semi-circular and 
triangular stamps, and contacting elastic materials with positive/positive and 

positive/negative curvatures are given in the AFOSR Technical Project Report [15]. 

5.2 Surface Cracking of Homogeneous Materials due to Sliding Contact 

The problem under consideration (for an arbitrary stamp profile) is described in 
Figure 7. With the application to fretting fatigue in mind, the main objective of this study 

is to investigate the problem of contact mechanics in elastic solids. The physical problem 
is the initiation and propagation of surface cracks under repeated loading. Examination of 
crack initiation requires the determination of axx in addition to contact stresses ayy and 
axy on the surface (Fig. 7). Crack propagation requires the evaluation of stress intensity 
factors ki and k2 at the crack tip (Fig. 7). It is assumed that the contacting solids are in 
relative motion and contact stresses are related through axy(x, 0) = rja^x, 0). First the 
contact problem for an elastic solid loaded by a moving rigid stamp of arbitrary profile is 
considered. The contact stresses ayy and axy and the in-plane stress axx on the surface are 
calculated by varying the coefficient of friction 77. 

The coupled crack/contact problem for a half plane with a surface crack and loaded by 
a moving rigid stamp of an arbitrary profile is then formulated, leading to a system of 
three-by-three singular integral equations of the second kind. The singular behavior of the 
solution and fundamental functions of the problem are obtained by using the function- 
theoretic method. Figs. 8 and 9 show some sample results giving the modes I and II stress 
intensity factors at the crack tip y = — d in a homogeneous half plane with a surface 
crack. The details of the solution and extensive results are given in AFOSR Technical 
Project Report [16]. 

5.3 Surface Cracking of Graded Materials due to Sliding Contact 

This is the same problem as that considered in Section 5.2 of this report, except that 
here the material properties are graded in y — direction (Fig. 7). The main problem studied 

is the initiation and growth of surface cracks in graded materials due to sliding contact. 
The problem is summarized in a manuscript which is appended to this report (Appendix 
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Figure 8: Mode I stress intensity factors for an edge crack in a homogeneous half-plane 
indented by a flat punch as shown in Figure 7. (a — b)/d — 0.1, v = 0.25. 
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Figure 9: Mode II stress intensity factors for an edge crack in a homogeneous half-plane 
indented by a flat punch as shown in Figure 7. (a - b)/d = 0.1, v = 0.25. 



C). The detailed analysis and extensive results are presented in the AFOSR Technical 

Project Report [17]. The main results of this study consist of the contact stresses, the in- 

plane component of the stress on the surface and modes I and II stress intensity factors at 

the crack tip. The elastic properties of the medium are assumed to vary exponentially in 

the direction perpendicular to the surface. 
The solution of the problem leads to two somewhat nonintuitive conclusions. The first 

is that the contact problem for a graded medium with an exponentially decaying stiffness 

(i.e., for 7 < 0 in fi(x) = /i0exp(7x), Fig. 4, Appendix C where \x is the shear modulus) 

is not a well-posed mechanics problem. Secondly, for a flat stamp (Fig. 4, Appendix C) if 
o = 0, the point y = 0, x = 0 is a singular point with a power \a\ which is dependent on 
the friction coefficient rj and Poisson's ratio v, and for sufficiently large values of r), \a\ 

can be greater than the standard 1/2 and the end point flat stamp singularities u and ß 

(Fig. 2, Appendix C). 
Other conclusions which may be drawn from this solution is that (i) The trailing end 

of the sliding rigid stamp with friction is a likely location of surface crack initiation, due 
to greater tensile stress concentration (see the Appendix C and Report [17]), (ii) In the 
medium containing a surface crack and loaded by a sliding rigid stamp, the mixed mode 

stress state at the crack tip is such that the cracks tend to be periodic and curved backward 
and (iii) In the coupled crack/contact problems for a graded medium the singularities a, ß 

and u are independent of the material nonhomogeneity constants 7 and /J,Q = //(0) and 
depend on the friction coefficient 77 and the surface value of the Poisson's ratio only. 

6.   Elastodynamics of Graded Materials 

A benchmark problem concerning the elastodynamics in graded materials was 
considered in [21]. The problem is a one-dimensional elastodynamic problem for an FGM 
plate having free-free or fixed-free boundary conditions. The former may approximate the 
impact problem in an unconstrained layer and the latter may simulate an FGM layer 
bonded to a very stiff substrate. The impact loading is approximated by a rectangular 
compressive pulse of a very short duration (0.2 //sec). Numerical results are obtained for a 

5 mm thick Nickel-Zirconoa FGM layer, two hypothetical FGMs with Ei/E2 = l/2, 

Pi/' Pi = 1/3 and Ei/E2 = 2, pi/p? = 3 and, for comparison, a homogeneous Ni plate, 
where E and p are the Young's modulus and mass density, respectively. 
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For the general variations in density p(x) and stiffness E(x), 

(E' = E(l — v)/(l + v)(l — 2v)), the closed form solution is not possible. However, 

one can obtain an asymptotic solution which appears to be highly accurate. 

The problem is first solved by assuming E'(x) = E0esp(ax), p(x) = poexp(ax) 

giving a constant propagation velocity c = y/E0/p0. In this case the solution can be 

obtained in closed form as well as asymptotically. The comparison of the two results 

shows that the error in a simple one term asymptotic approximation is less then 2% and a 

six digit accuracy is obtained by retaining the first six terms in the expansion. Next, a 

more general material property distribution is considered by assuming 

E'(x) = E0(ax + l)m and p{x) = p0(ax + If where E0 = E'(0), p0 = p(0) and a, m 

and n are arbitrary constants. It was shown that an estimate of maximum (spallation) 

stress may be obtained without solving the detailed wave propagation problem. This 

estimate is [<^xx{x)}max = a0ip0(x) for the free/free case and [o"xx(z)]max = 2a0<p0(x) for 

the fixed/free case, where <70 is the amplitude of the input pulse and 
<Po(x) = [(ax + l)/al + l](m+n)l ? / being the thickness of the layer (0 < x < I). 

In the general problem for which no closed form solution is feasible, it is shown that 
one may use the total energy balance as the criterion for the accuracy of the results (or for 
the convergence of extended asymptotic solutions). In the nondissipative system under 
consideration the conservation of energy requires that at any given time the total work 
done by the external loads be equal to the sum of kinetic and strain energies. The 
calculated results show that the error in this comparison is less than three percent which is 
within the acceptable range. 

7. Some Concluding Remarks 

From the viewpoint of failure mechanics the functionally graded materials seem to 
offer certain advantages among which one may mention the following 

• By eliminating the discontinuity in material property distributions, the 
mathematical anomalies regarding the crack tip stress oscillations for the interface 

cracks and the non-square-root singularities for the cracks intersecting the 
interfaces are also eliminated. In practice the importance of this result lies in the 
fact that in FGMs one can now use the crack tip finite element modeling 

developed for the ordinary square-root singularity and apply the methods of 
energy balance-based theories of the conventional fracture mechanics. 
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Use of FGMs as coatings and interfacial zones would reduce the magnitude of 

residual and thermal stresses. 
Use of FGM coatings and interfaces would eliminate the stress singularities at 

the points of intersection of interfaces and stress-free ends in bonded materials. 

• Replacing homogeneous coatings by FGM layers would enhance the bonding 

strength, reduce the crack driving force, enhance the surface properties and 

provide the medium with an R - curve behavior (thereby increasing the 

toughness). 
Most likely areas of applications of the concept of material property grading in 

the near future are high temperature components, load transfer components, 
components with improved impact resistance and improved bonding strength. 

Some of the engineering systems that would benefit from the application of the 

concept of material property grading are: Air systems (gas turbines and other hot 
section components), Space systems (thermoelectric cells, improved bonding and 
spallation resistance), Standard machinery (improved performance of bearings, 
gears, cams, machine tools and other load-bearing components) and Military 

(impact resistant components). 
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APPENDIX A 

Axisymmetric Crack Problem in a Functionally Graded 
Semi-infinite Medium 

Ali Sahin and Fazil Erdogan 
Department of Mechanical Engineering and Mechanics 

Lehigh University, Bethlehem, PA 18015 

Abstract 

In this study the axisymmetric crack problem in a functionally graded semi-infinite medium is 

considered. It is assumed that the penny-shaped crack is located parallel to the free surface and the 

mechanical properties of the medium vary in depth direction only. By using a superposition technique 

the problem is reduced to a perturbation problem in which crack surface tractions are the only external 

forces. The corresponding mixed boundary value problem is then reduced to an integral equation with 

a generalized Cauchy kernel and solved numerically to obtain stress intensity factors and crack 

opening displacements. Results obtained for different nonhomogeneity and length parameters are 

presented and discussed. The problem has applications to the investigation of the general question of 

spallation fracture. 

Introduction 

In recent years the requirements for high temperature applications of structural materials 

have become increasingly more stringent. Since very often the conventional materials were not 

adequate for modern technologies, various forms of composites and bonded materials have 

been used in such technological applications as power generation, transportation, aerospace 

and microelectronics. In high temperature applications, metals and metal alloys appear to be 

very susceptible to oxidation, creep and generally to loss of structural integrity [1]. Similarly, 

low strength and low toughness have always been the disadvantages of ceramics. Thus, as an 

alternative to conventional homogeneous thermal barrier ceramic coatings, the concept of 
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functionally graded materials (FGM) was proposed. FGMs are essentially two-phase 

particulate composites synthesized in a such way that the volume fractions of the constituents 

vary continuously in the thickness direction to give a predetermined composition profile. 

Figure 1      Crack geometry and notations 

In this study it is assumed that the functionally graded medium contains an initial dominant 
flaw which can be approximated by a penny-shaped crack parallel to the surface (Figure 1). 

With the applications to fatigue and fracture in mind, the primary objective of the study has 
been the calculation of the stress intensity factors and the crack opening displacements. The 
previous studies have shown that in linear elastic crack problems for FGMs the fracture 
mechanics parameters are not very sensitive to the Poisson's ratio, v, [2],[3]. Thus, in this 
study, too, it is assumed that v is constant throughout the medium. It is also assumed that the 
Young's modulus may be represented by an exponential function of the depth coordinate z 

(Figure 1). Under these assumptions the problem becomes analytically tractable and may be 
reduced to a system of singular integral equations by using the Hankel transforms [4]. 

Formulation of the Problem 
Consider the axisymmetric crack problem in a nonhomogeneous semi-infinite medium 

described in Figure 1 with the crack radius a and the distance h. Let the Lame 's constants be 
approximated by 

fi(z) = fj,0exp(az), X(z) = Aoexp(az). (1) 

For the perturbation problem under consideration the only nonvanishing external loads are 

assumed to be 

<rizz(r, 0+) = a2«(r, 0") = pi(r), 0<r<a, (2a) 
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CTirZ(r,0
+) = a2r2(r,0 ) = p2(r), 0 < r < o, (2b) 

Using the kinematic relation and the Hooke's law in the absence of body forces, the 
equilibrium equations can be expressed as follows : 

.       ^.fd2u     ldu     u      d2w \      .       ,.   f du     dw\ 

Jd2u      d2w\ 

,      ,,/ d2u      ldu     d2w\     ,„      ,   (du     u\ 

., . ^ Sw   ,    ,./d2u   a2w\   (K-1)/a«   dw\   „ 

where K = 3 - 4z/, A//z = 2i//(l - 2u), u being the Poisson's ratio. The function u(r, z) and 
w{r, z) are the rand z components of the displacement vector. Equation (3) may be solved by 
using Hankel transforms with the following boundary and continuity conditions: 

<rizz(r, h) = 0, crirz(r, h) = 0, 0 < r < oo, (4a) 

o"i«(r, 0) = a2zz(r, 0),    aXrz(r, 0) = a2rz(r, 0),     0 < r < oo, (4b) 

wi(r,0+) - w2(r,0~) = 0, a < r < oo, (4c) 

Ui(r,0+)-w2(r,0~) = 0, a < r < oo, (4d) 

where subscripts 1 and 2 refer to the domains 0 < z < h and z < 0, respectively. After some 
lengthy analysis the mixed boundary conditions (2a,b) and (4c,d) may be reduced to the 
following system of integral equations 

Ua^Mds+l f ][>„(«. r)4>s(s) ds = (A^1Pi(r), 0 < r < a (5a) 
TTJ-as~r KJO   j^i *ß0 

I f ^2 <fc + I [JZkiiis, r)Us) ds=- ^W),    0 < r < a (5b) 
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/a pa 

(j>i(s)ds = 0, /   s<f>2(s)ds = 
■a J—a 

(5c,d) 

where 

0i(r) = —(w(r,0+) - w(r,(T)), 0 < r < oo, (6a) 

02(r) = - —(ru(r,0+)-ru(r,(T)), 0 < r < oo (6b) 

0i and 02 are unknown functions and the Fredholm kernels ä^(S, r), (i, j =1,2), are square 

integrable in the domain 0 < (r, s) < a. Although in practice these kernels are generally 

bounded and continuous in the interval (0, a), in axisymmetric problems kij(s, r) invariably 
contains a logarithmic singularity at r = s [5]. Since there is no "closed form" solution for (5), 
an effective numerical solution may be developed by using a quadrature formula of the 
Gaussian type to evaluate the integral with Fredholm kernels for appropriately selected values 
of n, {i = 1, ..,n), and reducing the problem to a system of linear algebraic equations in the 
unknowns 0(SJ), (j = 1,.., n). It can also be shown that the solution of the integral equations 
(5) may be expressed in terms of the following infinite series : 

1 00 

^'-pffi^-®' (7a) 

1 oo 

where the orthogonal functions Tnare Chebyshev polynomials of the first kind and T0 = 1. 
An and Bn are the new unknowns which may be determined from the linear algebraic system 
obtained by substituting (7) into (5) and by using a method of reduction. 

Results and Discussion 

The main results of this study are the stress intensity factors calculated for various 
loading conditions as functions of the dimensionless nonhomogeneity constant aa defined by 
(1) and the basic dimensionless length parameter h/a. For a homogeneous infinite medium 
modes I and II crack problems are uncoupled and the stress intensity factors are given by 
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2     T   rPl(r 

TT\fäJo Ja2 - 'y/äJo A/ 
■■dr, 

a r2p2(r) 2      r HR(T 

n\/a3Jo vo2 — 
:<ir. (8) 

In Figures 2-17, the stress intensity factors and the crack opening displacements are shown 

for two different loading conditions, namely Pi(r) = — po, Piir) = Oand 
P2(r) = — qo(r/a), pi{r) = 0. For the problem under consideration the normalized stress 

intensity factors and the crack opening displacements are calculated for a constant Poisson's 

2 3 

aa 

Figure 2  Normalized SEF for various h/a, 
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Figure 3  Normalized SIF for various h/a, 

(rZz(r,0)= -po, <r„(r,0)=0 
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Figure 4   Normalized SIF for various h/a, 

<7zz{r, 0) = 0, <Trz(r, 0) = - q0 
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Figure 5  Normalized SIF for various h/a, 

<?zz{r,0) = 0, <Trz(r,0) = -qo 

ratio (u — 0.3) by varying h/a and aa. Note that the problem is formulated and can be solved 
for arbitrary crack surface tractions. Figure 2-9 show the normalized mode I and mode II stress 

intensity factors k\ and k2 for two primary loading conditions with the dimensionless 
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constants aa and h/a as the variables. For large h/a values, the calculated stress intensity 

factors agree with the results given in [3]. 

When there was only normal loading (azz(r,0) = - p0, arz(r,0) = 0), it was observed 

that for large values of h/a, normalized stress intensity factor ki increases slowly as the 
nonhomogeneity parameter aa increases. However, for small values of h/a, (such as 

h/a = 0.10), the normalized stress intensity factor ki first decreases and then slowly 
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Figure 6  Normalized SIF for various aa, 
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Figure 9  Normalized SIF for various aa, 

Vzz(r,0) = 0, <rrz(r,0) = - q0 

increases with increasing aa (Figure 2). Under the same loading k2 increases with increasing 

aa for all values of h/a. On the other hand for shear loading (azz(r,0) = 0, 

0>z(?")O) = — qo), stress intensity factor ki increases for all values of h/a with increasing 

aa, however, the values of k\ are small. Similarly, fc2 increases for all values of h/a with 
increasing aa, but the values of k% are small compared to fei under the normal loading. 
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rom Figures 10 and 11 it may also be observed that values of fa under normal loading and fa 

mder shear loading were almost symmetric with respect to cm (- 5 < cm < 5) for large 

values of h/a. Since the stress intensity factors do not depend on the magnitude of the shear 

modulus fj,Q for a crack in an infinite medium, this result is expected. 

*i 

Po y/ä 

-1 1 3 

aa 

Figure 10 Normalized SIF for various h/a, 

<Tzz(r,0) = -po, erre(r,0) = 0 

-113! 

aa 

Figure 11 Normalized SIF for various h/a, 

<Tzz(r, 0) = 0, <Trz(r, 0) = - q0 

U(r) 

0.0      0.2      0.4      0.6      0.8      1.0 

r/a 

Figure 12 Normalized COD for aa = 0, 

crZz{r, 0) = 0, <Tn(r, 0) = - q0 

U(r) 

0.0       0.2      0.4      0.6      0.8       1.0 

r/a 

Figure 13 Normalized COD for aa = 2, 

<Tzz{r,0) = 0, <r«(r,0) = - q0 

It was also observed that stress intensity factors k\ and fc2 under respectively normal and 
shear loading tend to certain limiting values as h/a increases. On the other hand as expected, 

same stress intensity factors tend to infinity when h/a goes to zero. For large values of h/a the 
results agree with [3]. 

Also, for fixed values of aa the stress intensity factors fciand fa under shear and normal 
loading, respectively, tend to certain limiting values which are, however, negligibly small. 

Figures 12-17, show some sample results for the normalized crack opening displacements 
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U(r) and W(r), which are respectively the r and z components of the relative crack opening 
defined by (Figure 1) 

n(r,0*)-tt(r,0-) W(r,0+)-W(r;0-) 
ülr; ago(^ + l)       ' ^ apö(«+l) (9) 

2// 2^ 

The figures show that the influence of the nonhomogeneity constant aa on the crack opening 

displacements is not very significant. On the other hand U(r) and W(r) are seen to be rather 

heavily dependent on h/a (particularly for small values of h/a). Again, for large values of 
h/a the results agree with that given in [3]. 

0.0      0.2      0.4      0.6      0.8      1.0 

r/a 

Figure 14 Normalized COD for aa = 0, 

<Tzz(r,0) = - po, cr„(r,0) = 0 

0.0      0.2      0.4      0.6      0.8      1.0 

r/a 

Figure 15 Normalized COD for aa = 0.5, 

<Tzz(r,0)=   -po,   (Trzir, 0)=0 

W(r) 

0.0      0.2      0.4      0.6      0.8       1.0 

r/a 

Figure 16 Normalized COD for aa = 1, 

<rZz(r, 0) = - po, arrz(r, 0) = 0 

W(r) 

0.0       0.2      0.4      0.6      0.8      1.0 

r/a 

Figure 17 Normalized COD for aa = 2, 

<rZz(r, 0) = - po, arz(r, 0) = 0 
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TABLE 1     THE VARIATION OF SIF WITH v FOR h/a = 2.0 AND 

<r«(r,0) = -po, <Trz(r,0) = 0. 

aa = = 0.1 aa = = 1.0 aa = = 2.0 aa = = 4.0 

V 
fcl 

Poy/a 
fc2 

Po\/ä 
fcl 

Po</a 
fc2 fcl 

Po</a 

fc2 

Po^/a 
fci 

Po\/ä 
fc2 

Poy/ä 

0.00 .6676 .0037 .7041 .1021 .7962 .2162 1.0598 .4636 

0.10 .6677 .0037 .7094 .1024 .8101 .2170 1.0870 .4657 

0.20 .6678 .0037 .7157 .1028 .8266 .2179 1.1186 .4682 

0.30 .6679 .0037 .7236 .1033 .8465 .2189 1.1562 .4711 

0.40 .6681 .0037 .7337 .1038 .8710 .2201 1.2021 .4747 

0.45 .6681 .0037 .7398 .1041 .8857 .2208 1.2292 .4768 

TABLE 2    THE VARIATION OF SIF WITH v FOR h/a = 2.0 AND 

o-«(r,0) = 0, <r«(r,0) = - go- 

aa = 0.1 aa = 1.0 aa — 2.0 aa = 4.0 

V 
fci 

qoy/ä 

fc2 

qo\Ja 
fci 

loy/ä 
fc2 

qo\/ä 
fci 

qoy/a 
fc2 

qoy/a 
fci 

<Zo\/ö 
&2 

qo^/a 

0.00 - .0025 .4253 - .0018 .4285 - .0008 .4370 - .0001 .4638 

0.10 - .0025 .4254 - .0017 .4288 - .0007 .4380 - .0001 .4659 

0.20 - .0025 .4254 - .0016 .4292 - .0006 .4391 .0000 .4683 

0.30 - .0025 .4254 - .0015 .4296 - .0005 .4406 .0000 .4712 

0.40 - .0025 .4254 - .0013 .4303 - .0004 .4423 .0000 .4747 

0.45 - .0025 .4254 - .0012 .4307 - .0003 .4434 .0000 .4768 

TABLE 3    THE VARIATION OF SIF WITH v FOR h/a = 0.25 AND 

<Tzz{r, 0) = - po, <rrz(r, 0) = 0. 

aa = 0.1 aa = 1.0 aa = 2.0 aa = 4.0 

V 
fci 

Poy/a 
fc2 

Poy/a 
fci 

Poy/a 
fc2 fci 

Poy/ä 
fc2 

Poy/a 
fci 

poy/a 
fc2 

Poy/a 

0.00 1.9598 - .7568 1.9490 - .6297 1.9564 - .4780 2.0285 - .1435 

0.10 1.9598 - .7568 1.9502 - .6289 1.9606 - .4753 2.0407 - .1362 

0.20 1.9598 - .7568 1.9517 - .6280 1.9657 - .4720 2.0552 - .1276 

0.30 1.9599 - .7568 1.9536 - .6267 1.9720 - .4679 2.0729^ - .1173 

0.40 1.9599 - .7567 1.9560 - .6251 1.9802 - .4627 2.0952 - .1045 

0.45 1.9599 - .7567 1.9576 - .6241 1.9852 - .4596 2.1088 - .0969 
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TABLE 4    THE VARIATION OF S1F WITH v FOR h/a = 0.25 AND 

<rZz(r,0) = 0, <r«(r,0) = -qo- 

aa = 0.1 aa = 1.0 aa = 2.0 aa = 4.0 

V 
fci 

qos/a 

fa fei 

qoy/ä 

fa fci &2 

9o\/ö 

fa 

qoy/ä 

fa 
qoy/a 

0.00 - .0925 .5412 - .0915 .5425 - .0887 .5463 - .0799 .5591 
0.10 - .0925 .5412 - .0914 .5426 - .0883 .5467 - .0790 .5601 
0.20 - .0925 .5412 - .0912 .5428 - .0878 .5472 - .0780 .5612 
0.30 - .0925 .5412 - .0910 .5430 - .0872 .5478 - .0768 .5626 
0.40 - .0925 .5412 - .0907 .5432 - .0865 .5486 - .0754 .5642 
0.45 - .0925 .5412 - .0906 .5434 - .0860 .5490 - .0745 .5652 

The problem was solved under the assumption that the Poisson's ratio v is constant. 

Theoretically this is not possible. The assumption can only be justified if the fracture 
mechanics parameters of interest, in this case the stress intensity factors, prove to be relatively 
insensitive to variations in the Poisson's ratio. In the problem considered, it was observed that 
stress intensity factors are relatively insensitive to variations in the Poisson's ratio for small 
values of nonhomogeneity parameter aa and for all values of h/a. But for large aa and small 

h/athe effect of Poisson's ratio may not be negligible. Some results are presented in Tables 1- 
4 to give an idea about the influence of the variation in v on the stress intensity factors. It may 
be seen that, generally, the influence of v on the stress intensity factors is not very significant. 
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APPENDIX B 

Surface Crack in a Graded Medium under 
General Loading Conditions 

Serkan Dag and Fazil Erdogan 
Department of Mechanical Engineering and Mechanics 

Lehigh University, Bethlehem, PA 18015 

Abstract 
In this study the problem of a surface crack in a semi-infinite elastic graded medium under general 

loading conditions is considered. It is assumed that first by solving the problem in the absence of a 

crack, it is reduced to a local perturbation problem with arbitrary self-equilibrating crack surface 

tractions. The local problem is then solved by approximating the normal and shear tractions on the 

crack surfaces by polynomials and the normalized modes I and II stress intensity factors are given. As 

an example the results for a graded half plane loaded by a sliding rigid circular stamp are presented. 

1   Introduction 

Graded materials, also known as functionally graded materials (FGMs) are generally 

multi-phase composites with continuously varying thermomechanical properties. Used as 

coatings and interfacial zones they tend to reduce stresses resulting from the material property 

mismatch, increase the bonding strength, improve the surface properties and provide 

protection against severe thermal and chemical environments. Thus, the concept of grading the 

thermomechanical properties of materials provides the material scientists and engineers with 

an important tool to design new materials having highly favorable properties in certain specific 

applications [1-6]. 

To take full advantage of this new tool research is needed not only for developing efficient 

material processing and characterization techniques but also for carrying out basic studies 

relating to the safety and durability of FGM components. Typical current and potential 

applications for this new class of materials include thermal barrier coatings and abradable 

seals in gas turbines, preparation of wear-resistant surfaces in load transfer components such 

as gears, bearings, cams and machine tools, various interlayers in microlectronic and 

Bl 



optoelectronic devices, high-speed graded index polymer optical fibers, impact resistant 

components, and thermoelectric cells [6]. 

The primary interest in this study is in initiation and propagation of surface cracks in 

graded materials. Initially it is assumed that the conditions of crack initiation on the surface of 

the uncracked graded medium have been met and a surface crack has been initiatiated. Since 

the material on the surface of FGM is generally 100% ceramic and consequently rather brittle, 

this can be verified by applying a simple maximum tensile stress criterion. The main problem 

is, therefore, that of a surface crack subjected to general mixed-mode loading conditions. The 

corresponding mode I problem was considered in [7] and [8]. The more general mode I 
problem of a graded layer bonded to a homogeneous substrate was studied in [9]. In recent 

years the crack and contact problems for FGMs has been attracting quite considerable 

attention. In addition to the references cited in [1-6], the review articles [10] and [11] may be 
of particular interest. 

2   Formulation of the Problem 

The geometry of the crack problem is shown in Figure 1. The graded half plane contains a 

surface crack of length d. The crack surfaces are assumed to be subjected to general mixed 
mode loading. Largely, for mathematical expediency and for the fact that main results of the 
crack problems in graded materials are rather insensitive to the variations in Poisson's ratio, in 
this study it is assumed that the elastic properties of the medium may be approximated by 

fj,(x) = /x0exp(7x), K = constant, (la,b) 

where \i is the shear modulus, 7 is a nonhomogeneity parameter, K = 3 - 4u for plane strain 
and K = (3 — v)/(l + v) for generalized plane stress, v being the Poisson's ratio. By using the 
Hooke's law 

y 

d       FGM 

x 

Figure 1: Surface crack in a graded medium 
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.      .       a(x) (,       ^.du     ,n       ^dv} ._ . Mx,,) = |4{(K + l)^ + (3-K)^}, (2a) 

.      .       u(x) r.       _.dv     /n       ,du) ,_,. ^,y) = ^4{(« + i)^ + (3-«)^}, (2b) 

<Txy(x, y) = /*(&) { ^ + ^ } (2c) 

the equilibrium conditions a^j = 0 can be expressed as 

.       «,d2u     .      ,,d2u     „  dv ,       ^öw       ,„      sdv     „ ,„ N 

(« + %J + (« " D^ + 2ä^ + * + 1} to + 7(3 - ">8» = °' (3a) 

<" + »V + (« - Jfe + 2ä^ + T(K " »> & + * « "») aj " °- <3b> 

Equations (3) must be solved under the following external loads: 

<Txx(0, V) = 0,      0-^(0, y) = 0,        - oo < y < oo, (4a) 

^(x, 0) = - p(x),        crxy(x, 0) = - g(x),        0 < x < d, (4b) 

<rij(x, y) -> 0 as (x2 + y2) -» oo, («, j = x, y), (4c) 

where p(x) and ^(x) are the crack surface tractions which are obtained from the solution of 
the original problem in the absence of the crack. We observe that the unknown functions that 
are convenient in this problem are the derivatives of the relative crack opening displacements 
defined by 

2^°   d (v(x, + 0) - v(x, - 0)) = h(x), 0<x<d, (5a) 
K + 1 dx 

2^o   d 
K+ldx 

(u(x, +0)-u(x, -0)) = /2(x), 0<x<d. (5b) 

2.1 The Opening Mode Problem 

In the graded half plane problem having a symmetry with respect to the y — 0 plane in 

geometry and material property distribution, the mode I (or the opening mode) and mode II (or 
the sliding mode) problems turn out to be uncoupled. Therefore, the problems may be 
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formulated separately. Furthermore, the solution to each problem may be expressed as the sum 

of two solutions, namely the infinite medium with a crack and a half plane x > 0 without a 

crack. 

We consider first the infinite medium with a crack. Defining the displacements by 
1      poo 

u(t\x,y) = —       Uii\u,y)exp(iux)du (6a) 
^ J-oo 

1 />00 

vf{x, V) = ^-       V®{u, y)exp(iux)dtü, (6b) 
*nj-oo 

from Eq. (3) it follows that 

(K - iy-jfi- + (« + 1)(T»W -u2)U[l) + (2tw + 7(3 - «))^J- = 0, (7a) 

(2iw + 7(« - 1))^- + (K + 1)^V + (* " X)(^ - ^)^iW = °- (7b) 

where superscript i and subscript 1 refer to infinite medium and opening mode problem 
respectively. Assuming the solution of Eq. (7) in the form exp(ray), the characteristic equation, 

its roots, and the displacements are found to be 

(8a,b) (n2 - Sin + iu("f + iu)) (n2 + Sin + IUJ{^ + iuSj) = 0,    Sx = 7W —-—, 

m = - I«! + ^4^-4iuj + Sl          Ä(m) > 0, (9a) 

|*i + ^4u;2-4^7 + <52,               &(n2) > 0, (9b) 

= _ i6l - ^4^-Uuj + S2,          K(n3) < 0, (9c) 

nA = ^Si-^4u2-4iun + 6l              K(n4) < 0, (9d) 

v% \x, y) = — /    2^Cj(a;)exp(njy + iux)du: (10a) 

1      /»oo    2 

t£ \x,y) = —       ^rCj(w)Aj(w)exp{njy + »waOdw, (10b) 
^ J-OO j=l 

U2     2- '  2 

^3 
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for y < 0, and 

1      /»oo   4 

u£ \x,y) = —       y2Cj(w)exp(njy + iux)du, (1 la) 
27r./-ooj=3 

1      /-oo   4 

v{l \x,y) = —       Vcj(a;)Aj(u;)exp(njy + iux)du, (lib) 
27ri-oojr^ 

for j/ > 0. In Eqs. (10) and (11) C?(u;), (j = 1,2,3,4) are unknown and A, are given by 

4,-(w)=-— ,_.    ,    ,, 7T , (j = l,2,3,4). (12) 
rij(2za; + 7(3 - Ac)) 

Consider now the half plane problem for x > 0 without the crack. By observing that the 

problem has a symmetry with respect to y = 0 plane the solution may be expressed as 

/•oo 

uf\x,y)= /   t/f^x^cos^da, (13a) 
Jo 

/>oo 

vSÄ)(x,y)= /   v}h\x,a)sm(ay)da, (13b) 
Jo 

where superscript h and subscript 1 refer to the half plane and the opening mode, respectively. 

From Eqs. (3) and (13) it follows that 

J2T"7"(70 JTTV1) //T/( ' 

(« + 1)^- + 7(« - 1)^- - O?{K - l)U[h) + 2a-^- + 7(3 - K)V™ = 0, 
aar ax ax 

2a^T + 7a(* -1)c^ -{K ~ l)d-lJ~ ~ 7(/c"1)f^~ + a2(K + l)v?) = °- 
(14b) 

Assuming the solution for Eq. (14) of the form exp(px), we find 

(p2 + 7P — a2 — za<5i) (p2 + 7p — a2 + ia8\) = 0, (15) 

Pi= - ö7 + -\/72 + 4a2 + 4ia<5i, &(pi) > 0, (16a) 

p1= _ I7 + I^72 + 4a2 _ 4ia6li SR(p2)>0, (16b) 
A Zi 

Ps= -if- -v/72 + 4a2+4ia<51, *R(p3) < 0, (16c) 
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Pi — - -7 - ~ vV + 4a2 - 4ia6i, ^(P4) < 0, (16d) 

/>oo 

uf\x,y) =       (B3exp(p3x) + B4exTp(p4x))cos(ay)da: (17a) 
Jo 

/>oo 

v[h\x,y) =       (B3D3exp(p3x) + B4Dtexip(p4x))sm(ay)da, (17b) 
./o 

n _      p){K + 1) + Q2
(1 - K) + 7Pj-(l + «) 

a(2Pi + 7(3-*)) ' (18) 

where £1 is given by Eq. (8b) and -63(0;) and -84(0) are unknown functions. We now express 

the solution of the mode I problem as follows: 

ui(x,y) = u({\x,y) + uP(x,y), (19a) 

vx(x,y) = v{l\x,y) + v[h\x,y), (19b) 

^kji(x,y) = a{^1(x,y) + a(ff1(x,y),       (k,j = x,y). (19c) 

where displacements are given in terms of six unknown functions d,..., C4, Bs, B4 which 

are determined from the following six conditions: 

o-xxi (0, y) = 0,     axyi (0, y) = 0,      - 00 < y < 00, (20a,b) 

<Tyyi(x, + 0) = <7yj,i(x, - 0),      crI2/1(a:, + 0) = axyi(x, - 0),     0 < a: < 00, (21a,b) 

ui(x, +0) = Ui(x, -0),                 0 < x < 00, (22) 

(Tyyi(x, 0) = - p(x),                       0 < x < d, (23a) 

vi(x,+0) = v1(x, -0),                 d<x<oo. (23b) 

The homogeneous conditions (20)-(22) may be used to eliminate five of the unknown 

functions. The mixed boundary conditions (23) would then determine the sixth unknown. 

By using the definitions given by Eq. (5), observing that for the mode I problem under 

consideration f2(x) = 0 and q(x) = 0, replacing the condition (23a) by (5a), and substituting 

from (10), (11), (17), (19) and (2) into (20)-(23), we obtain the following expressions giving 

Ci,..., C^B^B^ in terms of /i(x): 
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Cj(u;)='^±Pj(u;)[df1(t)QM- 
^o               Jo 

iurt)dt, (24a) 

4                                                                                       2 

]T(iu;(3 -K) + AjTij(l + K))PJ(U) - ]^(»w(3 - / 
J=3                                                                                  j=\ 

■C) + AjUjil + K))PJ(W) = 0, (24b) 

4                                                     2 

j=3                                                j=l 

(24c) 

= 1, (24d) 

P4(U) + P3(U)-P2(üJ)-PX(U) = 0, (24e) 

/•oo   4 

/   £((« + l)Pi + öja(3 - «))Bi(a)cos(ay) 
•/o   j=3 

+ — /    V(i«(« + 1) + Aj-n^S - /c))Cj(w)exp( rijy)du = 0,        0 < y < oo, (25a) 

/■oo   4 

/   y^(-DiPi - a)Sj(a!)sin(ay) 

1    yoo   4 ^ 
H /    /   (rij + iuAj)Cj(u)ex\)(njy)duj = 0, 0 < y < oo. (25b) 

fi(x) is the new unknown function and is determined fromEq. (23a). Because of symmetry in 

this problem it is sufficient to consider 0 < y < oo only. Evaluating some of the integrals in 

closed form by using the theory of residues, Eqs. (25) may be reduced to 

4 

53((/c + l)Pj + Dja(3 - K))B){a,t) = Rxxi(a,t), 
j=3 

(26a) 

4 

J'=3 

(26b) 

where 

B/aKriB'"(M)exp((I-Al>) /i (*)<**> (27) 
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and Rxxi, Rxy\ and \x are given in Appendix A. 

2.2 The Sliding Mode Problem 

Referring to Fig. 1, in this section it is assumed that y = 0 is plane of anti symmetry. 
Consequently, in Eq. (4) p{x) = 0 and in Eq. (5) f\{x) = 0. Thus, following a procedure 

similar to that of Section 2.1, the displacements for the graded infinite medium with a crack 

along the x — axis may be written as 

u2 \xiV) — 7T       y^ßj(u)exP(njy + iux)du, (28a) 

— i   r°° _ ^ _ 
v2   (xi v) = 7T~ /    ^2Ej(u)Aj(uj)exp(njy + iu>x)du>, (28b) 

for y < 0 and 

1      poo    4 

\x,y)= —       y^Ej(u)exp(njy + iux)duj, (29a) ^2 

1       />oo    4 

v%   (x,y) = —       y^Ej(u))Aj(u)exp(njy + iux)du, (29b) 
^ J-00 ,_Q 

for y > 0. In Eqs. (28) and (29) £a(u;),..., E^(u) are unknown and rij and A, are given by 
Eqs. (9) and (12), respectively. Similarly, the general solution for the graded half plane x > 0 
under antisymmetric loading conditions may be expressed as 

/>00 

«2  0»M/) = /   (G3((x)exp(p3x) + G4(a)exp(p4x))sin(ay)da, (30a) 
Jo 

poo 

vih\x,y)= /   (G3(a)iJ3(a)exp(p3x) + G4(a)i?4(a)exp(p4x))rfa, (30b) 
JO 

where  G3(a)  and G±{a)  are unknown, the characteristic equation and its roots pj, 

(j = 1,..., 4) are given by Eqs. (18) and (19) and H3(a) and HA{a) are 

„.  N     7Pj(K + l) + a2(l-K) + p2AK + l) 
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We now express the displacements and stresses in the cracked half plane under antisymmetric 

loading in terms of the following sums 

u2(x, y) = u{
2\x, y) + uf \x, y), (32a) 

v2(x, y) = v%\x, y) + v}\x, y), (32b) 

crfcj2(x, y) = afy(x, y) + a££(x, y),       (k, j = x, y). (33) 

In the surface crack problem under anti symmetric loading the solution given by Eqs. (32) 

and (33) must satisfy the following boundary and continuity conditions: 

0-^2(0, y) = 0,     0-^2(0, y) = 0,      - 00 < y < 00, (34) 

o-yy2(x,+0) = ayy2(x, -0),     er xy2 (x, + 0) = axy2 (x, - 0),     0<z<oo, (35) 

v2(x, + 0) = v2(x, — 0),                 0 < x < oo, (36) 

oxy2(x,0) = - q(x),                        0 < x < d, (37a) 

u2(x, + 0) = u2(x, — 0),                 d < x < oo. (37b) 

Again, by replacing Eq. (37a) by Eq. (5b) and using the solution given by Eqs. (28)-(31), the 
conditions (34)-(37) may be reduced to a system of equations expressing the unknown 
functions Ej(u), (j= 1,...,4), G3(a) andG^a:) in terms of the new unknown function 
f2(x) as follows: 

£j(w) = ^r^-M f /2(t)exp( - iut)dt, 
<*Mo           Jo 

(38) 

4                                                                                       2 

^(ZCJ(3 -K) + Aj-nj(l + K))ZJ(U) - J^(iw(3 - K) + AjU^l + K))ZJ(U) = 0, 
3=3                                                                                j=l 

(39a) 

4                                                     2 

J=3                                                 j=l 

(39b) 

4                                2 

3=3                          j=l 

(39c) 

«w{z4(u;) + Z3(w) - Z2(w) - Zi(w)} = 1. (39d) 
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/»OO    1 

/   £((«; + l)Pj - ify*(3 - K))Gi(a)sin(ay) 
JO     j=3 

1     Z"00 .^, 
+ —/    y](m>(/t + 1) + AjUj{Z - K))Ej(u)exp(njy)du — 0,  0 < y < oo, (40a) 

^ft J-OO 4-9. 

roo   4 

/   YjßiPi + a)Gj(a)cos(ay) 
Jo     ,=S J'=3 

+ — /    ^(TIJ + iu:Aj)Ej(u)exp(njy)du = 0,        0 < y < oo. (40b) 

In this problem, too, because of symmetry it is sufficient to consider y > 0 half of the medium 

only. Also, by evaluating some of the integrals in closed from Eqs. (40a,b) may be reduced to 

4 

£((K + l)Pj - Hja(3 - K))G*(a,t) = Rxx2(a,t), (41a) 
3=3 

4 

YSPffii + a)G*(a, t) = Rxy2(a, t), (41b) 

where 

Gi(a) = ^| G*(cM)exp(Q - X1)t)f2(t)dt, (42) 

and i?Za:2) Rxy2 and Ai are given in Appendix A. 

3   The Integral Equations 

By using the solution developed in Section 2 all stress and displacement components can 
be expressed in terms of f\{x) and f2(x) with appropriate kernels. Specifically, observing that 
the problem is uncoupled, using Eqs. (22) and (36), the conditions (23a) and (37a) which are 
yet to be satisfied may be written as 

ayy(x,0) = lim / kn(x,y,t)fi(t)dt = - p(x),     0 < x < d, (43) 
y-^oJo 

axy(x, 0) = lim /  k22(x,y,t)f2(t)dt=-q(x),     0 < x < d, (44) 
y-+ojQ 
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where the kernels ku and k22 are given in Appendix B. Note that unlike the homogeneous half 

plane, in the graded medium with a surface crack ku(x,0,t) and k22(x,0,i) are not equal. 

The singular nature of the integral equations (43) and (44) and that of the solutions /i and f2 

may be determined by examining the asymptotic behavior of the integrands KZ\ 

(r = i,h; s = 1,2) given in Appendix B. After performing the necessary analysis the integral 

equations (43) and (44) may be reduced to 

d-l    1 
/   \-~~ + hns(x,t) + /ni/(as,«)l/i(t)d* = - exp( - ^x)p(x), 0<x<d,    (45a) 

JQ  Lirt-x J 

fd r 1   1 l / + h22s(x,t) + h22f(x,t) f2{t)dt = - exp( - r/x)q{x), 0 < x < d,    (45b) 
J0   iTTt-X J 

where hns and /i22s are generalized Cauchy kernels (of the order l/t) that become unbounded 
as the arguments x and t tend to the end point zero simultaneously. The limits of these singular 

kernels are found to be: 

lim /in«(x,t) =   lim/in«(x, t) =    lim h22s(x,t) =   \imh22s(x,t)    = 
(x,t)-+0 . 7-^0 (x,t)->0 7->0 

= i(—+ —^-—^J,        0<(t,a;)<d. (46) 
n\t + x     (t + xf      (t + xfy K 

The expressions for hkks and hkkf, (k = 1,2) are given in [12]. It may be observed that (46) is 
the standard expression found for edge cracks in homogeneous materials [13]. Thus, the 

solution of the integral equations may be expressed as 

h{x) = {d-x)-ll2f{{x), 0<x<d, (47a) 

f2(x) = (d-x)-1/2fi(x), 0<x<d, (47b) 

where fi(x) and f2(x) are unknown bounded functions. Note that, there is no singularity at 
the crack mouth x = 0, y = 0 while the standard square-root singularity is retained at the 

crack tip. 

4   On the Solution of the Integral Equations 

The integral equations are solved by using a collocation technique. First the intervals (0, d) 

in (45) are normalized by defining, 
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fi(t) = <k{r),      z = 1,2, -Kr<l, (48a) 

d       d 
t = -r+-,        0<t<d, -1< r < 1, (48b) 

x = -s + -,       0<x<d, -1<S<1. (48c) 
Zi Zi 

The solution may then be expressed as 

00 

Mr) = (1 - rr1/2^^-1/2'0^), (49a) 
n=0 

oo 
02(r) = (1 - r)-1/2£A2nPi-1/2.o)(r)j (49b) 

n=0 

where P„ ' ,0)(r), — 1 < r < 1, are Jacobi polynomials. Substituting (49) in (45), 
truncating the infinite series at N and regularizing the singular terms, the integral equations 
become 

El - ^w^tofofr + 1>~n + V2; 3/2; (1 - a)/2) + mllB(a)l AlB = 
^l       V27rr(w + l/2) J 

= - exp( - 7d(l + a)/2)p(d(l + s)/2),    - 1< s < 1, (50a) 

^l       V27rr(n+l/2) J 

= - exp( - 7d(l + s)/2)g(d(l + s)/2),    - 1< s < 1, (50b) 

where r() is the Gamma function and F() is the hypergeometric function. Expressions for 
mkkn(s), (k = 1,2) are given in Appendix B. Equations (50) are solved numerically using a 
collocation technique. The following roots of the Chebyshev polynomials are used as the 
collocation points: 

^ = COS(HTT))'      J = I.-.W+I. («> 
After solving the integral equations for /i and /2 stress intensity factors at the crack tip 

(d, 0) may be evaluated by using the results. The stress intensity factors are defined by and 
calculated from 
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ki =   lim y/2(x - d)ayy(x, 0) = 
x-*d+0 

= ~Ä^M V^r^£(,,(a:,()+) " V(X'°"))' (52a) 

&2 =    lim yj2(x — d)axy(x, 0) = 
X-KI+0 

l\m^^2W^)^-(<x,0+)-u(x,0-)). (52b) 

From (49) and (52) it then follows that 

N 
*i = - exp(7d)v/rfJ]AlnPi-1/2-o)(1)) (53a) 

n=0 

AT 

fc2 = - exp(7d)v/d^A2nPrl-
1/2'°)(l). (53b) 

n=0 

5   Results 

The main results of this study are the variation of the stress intensity factors as functions of 
the material nonhomogeneity parameter 7. Some sample results are also obtained giving the 
crack opening displacements. Assuming that in practical applications the crack surface 
tractions for the perturbation problem would be sufficiently well-behaved continuous 
functions and may be approximated by fourth degree polynomials with sufficient accuracy, the 
input functions may be expressed as 

4 4 

p(x) = Y,<rn(x/d)n,      q(x) = ]TVn(x/d)n, (54a,b) 
71=0 71=0 

where the coefficients an and r„ are known constants. To facilitate the application of the 
results, the normalized stress intensity factors are given in Tables 1 and 2 in tabular form. It 
should be remarked that even though there are no restrictions on the coefficients rn, aQ,... 0-4 
must be such that the resultant ki is positive. Otherwise the mode I problem has to be 
reconsidered as a crack closure problem and the contact region on the crack surface must be 

determined (by using &I(CJ) = 0 as the closure criterion, C{ being the end points of the contact 
regions) 
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The calculated stress intensity factors for crack surface tractions (54) are also shown in 

Figures 2 and 3. The figures are self-explanatory: as the material nonhomogeneity parameter 7 

decreases, both ki and k2 tend to increase, fci and k2 are much more sensitive to the variations 

in 7 for 7 < 0 (for the "softening" material) than for 7 > 0 and generally for a given 7 the 
amplitude of fci is greater than that of k2, particularly for 7 < 0. The standard normalized 

stress intensity factors ki/(a0\/d) = k2/(a0\/d) = 1.1215 in an homogeneous half plane 

with a surface crack subjected to uniform pressure a0 and shear r0 are shown in Table 1 and 

Figures 2 - 4 as reference. 

Figure 4 shows the results for fixed grip tensile (ew(a:, =poo) = e0) and shear 
(lxy(x, Too) = 70) loading. Note that as the nonhomogeneity parameter 7 increases, the 

normalized k2 (dashed lines) monotonically increases, whereas k\ goes through a minimum 
near 7 = 0. The figure also shows the mode I results for a graded half plane under fixed grip 
loading e0 obtained in [9] (full circles). Not only is the agreement quite good, also somewhat 

paradoxial result concerning the slight increase in k\ for 7 < 0 is independently verified. 
Figure 5 shows the influence of the Poisson's ratio v on the modes I and II stress intensity 

factors in a graded half plane with a surface crack loaded by uniform crack surface tractions 
p(x) = a0 and q(x) = r0. As shown in the previous studies, the effect of v on k\ does not 

seem to be significant. However, particularly for large values of 7, the influence of u on k2 

could be significant. 
Figures 7-10 show some sample results for the normalized crack opening displacements 

(COD). It may be observed that in all cases as 7 increases (or as the stiffness of the medium 
increases), the crack opening displacements decrease, the influence of 7 on COD is more 
significant for 7 < 0 than for 7 > 0, and generally for 7 < 0 COD under mode I loading 
(a0 and a) is greater than that under mode II loading (r0 and r). These are all intuitively 

expected results. 
Figure 11 describes a sample problem concerning a graded half plane with a surface crack 

loaded by a sliding rigid circular stamp. It is assumed that along the contact area a < y < b the 
condition of Coulomb friction is valid with rj as the coefficient of friction. For the geometry 
and the direction of loading shown, the results are given in Figures 12-14. Figures 12 and 13 
show the modes I and II stress intensity factors, respectively. Figure 14 shows the normalized 

force P for a given contact area ((& - a)/R = 0.1) as a function of the stamp location. As 
expected, P increases with increasing material stiffness (or 7) and distance a. However, for 
(approximately) (a/R) > 1 P is very nearly constant. For details and extensive results see 

[12] and [13]. 
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Appendix A 
Various Functions Used in the Solution of the Mixed Mode Crack Problem 

£**i(M) = -* + 1AiA2^2 + A2){7A2Cos(A2*) + (7Ai - 2(A2 + A2
2)sin(A2i))} 

7TK+1 A]A2(Af + A2,) 

x {A2(A? + A2 +7
2/4)cos(A2t) - Ai (A2 + \\ - 7

2/4)sin(A2i)} (A2) 

iWM) = - lll\XlX/xl + xl){^cos(X2t) + AlSin(A2i)}; (A3) 

TTK + 1 AiA2(Af + \\) 

Ri = \/(72/4 + a2)2 + a2
7

2(3 - K)/(K + 1), 

(Al) 

x j7A2cos(A2t) + (2(\l + A2,) + 7AiW(A2t)}, (A4) 

Ai = l/^^. W*^2, (A5a,b) 

(A6) 

Ä2 = 7/4 + a2, (A7) 

Appendix B 
Expressions for the Kernels ku(x, y, t) and k-^{x, y, t) 

ku(x,y,t) = k$(x,y,t) + k$\x,y,t), (Bl) 

k22(x, y, t) = k$(x, y, t) + k$\x, y, t), (B2) 

k$(x,y,t) = K
K
+

_\ 
eXP

4
(Jx)|_^g(a;)y)exp(^(x - t))dw, (B3) 
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k[1\x,y,t) = K + )eXP^7X) rK^(a,t,x)cos(ay)da, (B4) 

k$(x, y, *) = (« + i)SW]fEL f°°K®(u, y)exV(iu(x - t))du, (B5) 

k^\x,y,t) = (K + lf-^^J0°K^\a,t,x)cos(ay)da, (B6) 

where the integrands are given as 

4 

#ff (w, y) = ^(*w(3 - K) + A,-nj(l + K))PJ-(w)exp(nij/), (B7) 
j=3 

4 

#22 (w, y) = ^2(rij + «wAi)ZJ-(w)exp(njy), (B8) 
j=3 

4 

i^W,*) = ]T(ft(3 - K) + Dja{\ + K))B*(a,t)exp(Pjx + (7/2 - Ai)t), (B9) 
;=3 

4 

Äg>(a, t, x) = £> + HjPj)G*(a, t)exp(Pjx + (7/2 - Ai)t). (BIO) 
i=s 

The terms used in Eq. (50) are in the following form: 

mnn(s) = f\l- r)-1/2Hn(s,r)Pt1/2'0)(r)dr, (Bll) 

m22n(s) = f\l- r)-1/2H22(s, r)PtlM(r)dr, (B12) 

,     N     d f       /d       d d       d\ /d       d  d       d\l 

„  .     ,     df.     /d       d d      i\     ,     (d      d d      d\l 
^(s,r) = -^-s + -,-r+-j+^J^-s+-,-r+-jj. (B14) 
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Table 1 Normalized mode I Stress Intensity factors 

*i/Mv' ') 
^d o-o <Ti(x/d) a2{x/df <T3(x/df <7i{x/d) 

-3.0 4.4345 1.9324 1.2148 0.8897 0.7076 
-2.0 3.1238 1.4495 0.9525 0.7209 0.5879 

-1.0 1.9846 1.0196 0.7152 0.5663 0.4774 

-0.5 1.4988 0.8317 0.6099 0.4970 0.4274 
0.0001 1.1215 0.6828 0.5255 0.4410 0.3868 

0.5 1.0225 0.6439 0.5035 0.4264 0.3763 
1.0 0.9930 0.6328 0.4974 0.4225 0.3735 
2.0 0.9807 0.6289 0.4956 0.4215 0.3729 
3.0 0.9884 0.6329 0.4981 0.4233 0.3743 

Table 2 Normalized mode II Stress Intensity Factors 

fc2/M
1/2) 

'yd Tb T\{x/d) Mx/df T3(x/df n{x/d)A 

-3.0 1.6704 0.9273 0.6738 0.5437 0.4635 
-2.0 1.4765 0.8398 0.6202 0.5063 0.4355 
-1.0 1.2825 0.7534 0.5678 0.4700 0.4083 
-0.5 1.1940 0.7144 0.5443 0.4539 0.3964 

0.0001 1.1215 0.6829 0.5255 0.4410 0.3868 
0.5 1.0727 0.6620 0.5132 0.4327 0.3807 
1.0 1.0429 0.6497 0.5062 0.4280 0.3773 
2.0 1.0164 0.6397 0.5008 0.4245 0.3749 
3.0 1.0128 0.6394 0.5011 0.4249 0.3753 
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Fig. 2 Normalized mode I stress intensity factors, K = 2, /x(x) = //0exp(7:r). 
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Fig. 3 Normalized mode II stress intensity factors, K = 2, p(x) = /i0exp(7x). 
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2.4 I—i—i—i—i—i—i—i—I—i—>—i—r 

Fig. 4 Normalized modes I and II stress intensity factors for fixed grip tensile and shear 

loading,« = 1.8,/J(X) = /j,0exp(jx), a = 8/j,0e0/(K + 1), r = 8^07o/(« + !)• 

T—i—I—i—1—1—r—i—r- 

^    3.5 

 v=0.1 
 v=0.25 
 v=0.49 

o 

0.5 I » ■ ■ i ■ ■ ' i ■ ■ 
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yd 

Fig. 5 Normalized mode I stress intensity factors for plane strain and for different values of 

Poisson's ratio, \i{x) = ßoexp^x). 
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Fig. 6 Normalized mode II stress intensity factors for plane strain and for different values of 

Poisson's ratio, ß{x) = noexp(lx)- 
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Fig. 7 Normal       crack       opening       displacement,       v*(x) = v(x, +0) - v(x, -0), 

ayy(x, 0) = -aQ,K = 2,fi = (j,oexp(jx). 
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xl d 

Fig.8  Tangential     crack     opening     displacement,     u*{x) = u(x, +0) — u(x, — 0), 

^(x, 0) = - T0, K = 2, /* = /x0exp(7x). 

1.00 

Fig. 9 Normal       crack      opening      displacement       for       fixed       grip 

v*(x) = v(x, + 0) - v(x, - 0), a — 8ßo€o/{K + !),« = 1.8, /x = /i0exp(7:r). 

loading, 
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Fig. 10 Tangential      crack      opening      displacement      for      fixed      grip      loading, 

u*{x) = u{x, + 0) - u(x, - 0),r = 8/io7o/(« + !)>« = 1-8, Kx) = /-^exp^rr). 

Fig. 11 A graded half plane with a surface crack loaded by a sliding rigid circular stamp. 
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Fig. 12 Mode I stress intensity factors for a graded half plane loaded by a sliding circular 

stamp     as     shown     in     Figure     12,     (b- a)/R = 0.1, d/i? = 0.1, r\ = 0.4, K = 2, 

/x(x) = ^0exp(7;r). 
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Fig. 13 Mode II stress intensity factors for a graded half plane loaded by a sliding circular 

stamp     as     shown     in     Figure     12,     (b- a)/R = 0.1, d/R = 0.1, 77 = 0.4, K = 2, 

fi(x) = /j,0exTp(jx). 
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Fig. 14 Normalized force required for a given contact area (b - a)/R = 0.1, d/R = 0.1, 
T] = 0.4, « = 2.0, n{x) = /ioexp(7a;). 
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APPENDIX C 

Fracture of graded materials due to sliding contact 
Serkan Dag, Fazil Erdogan* 

Department of Mechanical Engineering and Mechanics, Lehigh University, 

19 Memorial Drive West, Bethlehem, PA 18015, USA 

Abstract 

In this article the initiation and subcritical growth of surface cracks in graded materials due 

to sliding contact are considered. After a brief introduction the general coupled crack/contact 

problem for a semi-infinite graded medium subjected to a sliding rigid stamp of arbitrary profile 

is formulated. Solving the problem in the absence of any cracks, the complete stress state on the 

surface of the medium is evaluated and the critical stress that would cause the surface crack 

initiation is identified. The coupled problem is then solved, stress intensity factors are calculated 

and some results are presented. 

Keywords: Functionally graded materials; Sliding contact/crack problems; Stress intensity factors. 

1. Introduction 

Graded materials, also known as functionally graded materials (FGMs) are 

multiphase composites with continuously varying volume fractions and, as a result, 

thermomechanical properties. Used as coatings and interfacial zones they reduce the 

residual and thermal stresses resulting from the material property mismatch, increase the 

bonding strength, improve surface properties and provide protection against severe 

thermal and chemical environments. Many of the present and potential applications of 

FGMs involve contact problems. These are mostly load transfer problems in deformable 

solids, generally in the presence of friction as in, for example, bearings, gears, cams, 

machine tools and abradable seals in gas turbines. In such applications the concept of 

* Corresponding author. Tel: + 1-610-758-4099; Fax: + 1-610-758-6224. 

E-mail address: fe00@lehigh.edu (F. Erdogan). 
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material property grading appears to be ideally suited to improve the surface properties 

and wear-resistance of the components that are in contact. 
From the standpoint of failure mechanics an important aspect of contact problems is 

the surface cracking which is caused by friction forces and which invariably leads to 

fretting fatigue. In most applications material property grading near the surface is used as 

a substitute for homogeneous ceramic coatings. In both cases that is, in both 

homogeneous and graded coatings the surface of the composite medium consists of 100% 

ceramic which generally is a brittle solid. Hence, the "maximum tensile stress" criterion 

may be used for crack initiation on the surface. Once the crack is initiated, its subcritical 

growth under repeated loading by a sliding stamp is controlled by stress intensity factors 

at the crack tip. The main objective of this study is, therefore, the evaluation of peak 
tensile stresses on the surface for the purpose of studying crack initiation and the stress 

intensity factors for modeling the subcritical crack growth. Specifically, the objective is 
the examination of the influence of friction coefficient and material nonhomogeneity 
parameters on the peak surface stresses and stress intensity factors. The problem is 
considered under the assumptions of plane strain, Coulomb friction and linear 

nonhomogeneous elasticity. 
Studies in contact mechanics in elastic solids were originated by Hertz [1]. The 

technical literature on the subject is very extensive. A thorough description of the 
underlying solid mechanics problems in homogenous materials may be found, for 
example, in [2]. Some sample solutions for frictionless contact problems in a semi-infinite 

graded medium are given in [3]-[5]. Details of the analysis of homogeneous substrates 
with FGM coatings having positive or negative curvatures and extensive results regarding 
the stress distribution under plane strain conditions and sliding contact are discussed in 
[6]. The crack/contact problem described in Figure 1 has also been considered in [7] for a 
homogeneous half-plane by using the conformal mapping technique. Even though the 
square root singularity at the crack tip is embedded in the technique, the procedure used in 
[7] does not account for the singularities at the end points of the contact region a and b, 

particularly when a = 0 (see, Figure 2). Also, for some reason in [7] the mode II stress 

intensity factor fc2 is calculated to be negative, implying that under the loading by a sliding 
stamp the surface crack would tend to curve forward in the direction of the moving stamp, 

whereas the experimental results (e.g., [8]) and the results found in this study show the 

opposite. 

C2 



2. Formulation of the general crack/contact problem 

The coupled crack/contact problem for a nonhomogeneous half plane considered in 

this study is described in Figure 1. Largely for mathematical expediency it will be 

assumed that the elastic parameters of the medium may be approximated by 

n(x) = /i0exp(7:r), K = constant (la,b) 

where \x is the shear modulus, 7 is the nonhomogeneity parameter, K — 3 — Av for plane 

strain and K = (3 — v)/(l + u) for the generalized plane stress, v being the Poisson's 

ratio. By using the Hooke's law 

.      a(x) f,       ,,9u     ,n      ,dv\ ._ N '-(*.»)-^4{(« + l)5 + (3-«)5S}. w 

'-(«.»)-^{(«+i^+p-«)i}. w 

the equilibrium equations CT^J = 0 become 

(-^^«-«S^S^^1^^3-^^   (3a) 

(-+i)f5+(-i)£+2a+^-1)s+*-«S-ft     (3b> 
In previous studies (e.g., [9]) it was shown that the stress intensity factors in graded 
materials are not significantly influenced by the variation in v. Thus, in this study, too, the 
Poisson's ratio will be assumed to be constant. Equations (3) must be solved under the 

following conditions: 

0^(0, y) = 0,      (Txy(0, y) = 0,       - oo < y < a, b < y < oo, (4a,b) 

A *$ 

o"xy(0, y) = r)axx(0, y), —^-—«(0, y) = f(y),      a<y<b, (5a,b) 
K +1 oy 

(Tyy(x, 0) = 0,      <Txy(x, 0) = 0,      0 < x < d, (6a,b) 
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Ja 
<rXx(0,y)dy= -P, (7) 

e2/2/(x,±oo) = e0, (8) 

where 77 is the coefficient of friction and the known function f(y) defines the stamp 

profile. Note that, in addition to f(y), the external loads are described by the resultant 

force P, the remote strain e0 and the crack surface tractions given by (6). We also observe 

that the unknown functions of the problem may be identified as follows (Figure 1): 

2/uo   d 
^-—(^,0+) - v(s,0-)) = h{x\ 0<x<d, 

^^(ti(ar,0+) - u(x,0-)) = f2(x), 0 < x < d, 

^**(0,y) = /8(y), a < y <b. 

(9a) 

(9b) 

(10) 

By  using  the  Fourier transforms,  the  mixed  boundary value  problem under 
consideration may be reduced to a system of integral equations of the following form: 

<rm(x,0) = J   [ku(x,t)/i(t) + k12(x,t)f2(t)\dt+ f k13(x,t)f3{t)dt + E(x)e0 = 0 

(11a) 

axy(x,0)=  I   [k2i(x,t)f1(t) + k22(x,t)f2(t)}dt+ j k23(x,t)f3(t)dt = 0, 

0 <x < d, 

f6 

0 < x < d, (lib) 

^+idiu^y)==jQ [k^y^fl^ + k^y^^]dt + j h3(y,t)f3(t)dt = 

= f(y), a<y<b, (lie) 

where the kernels ky may be expressed in terms of infinite integrals with known 
integrands by using MAPLE and the residue theorem. For example, consider the kernels 
kj3, j = 1,2,3, that arise from the contact problem, that is, in Figure 1 and (11) by letting 
d = 0. Using Fourier transforms, from (3) it can be shown that 
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1       />oo    2 . 

«sfo y) = 7T I    ^M3exV{sjX + ipy)dp, (12a) 

2 I />00      ^ 

«sO», y) = 7T       y^MjNjexpisjX + zpy)rfp, (12b) 

where 

t ((/c + l)sj + 7(/c + l)Sj + p2(l - «)) 

p(2sj + 7(3 - «)) 

and si, S2  are the roots of characteristic equation with negative real parts. The 

characteristic equation and its roots are given by 

(S
2 + 1S - p2 - i\p\8) {s2 + 75 - p2 - i\p\6) = 0,   6 = M^f^f (14a,b) 

si = - |T - | VT2 + 4p2 + 4*|p|tf,          £(Sl) < 0, (15a) 

52 = - \l- ^V72 + V-4z|#,          K(a2) < 0, (15b) 

53 = ~ \1+ 5>/72 + 4p2 + 4*H5,           5R(s3) > 0, (15c) 

54 = - ^7+ ^V
/72 + 4p2-4i|/?|5,          &(s4) > 0. (15d) 

The functions Mj(p) are given as 

AG(P) = HP) I /3(*)exp( - *^*)d*          (j = 1,2), (16) 
Ja 

where ^i and V>2 are given by 

2 _ i 

J>i(« + !) + W<3 - «))^i(p) = , (17a) 

YjLip + Ni8i)1>i{p) = 2-. (17b) 
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In (12), the subscript 3 stands for the displacements due to stamp loading only. After 

determining u3 and v3, referring to (11) and using the stress-strain relations the kernels 

may be obtained as follows: 

MM) = T-^4 /°°'E(si(3 " «) + W-fa + lM'(/>)exp(Sjx - ipt)dp,     (18a) 
27TK- lj-oojrf 

coo    2 

h3(x, t) = ^-\    V(ip + NjSj)il>j(p)exp(8jX - ipt)dp, (18b) 
27T   J-oopt 

*as(y,*) = T-% r^V'i(p) + Mp))exp(ip(¥- t))dp- (18c) 

For future reference, one may also express the in-plane component of the stress on the 

surface due to the stamp loading as 

<ryyz(0,y)= [ kyd(y,t)h(t)dt, (19) 
Ja 

1        a f°° . 2 

MM) = ^-^T /    E^3 - *) + W(" + l))^(p)expMv - *))<*/»•       (20) 

The remaining kernels fcy (i = 1,2,3; j" = 1,2) are obtained by following a 
procedure which is somewhat more complicated than but essentially quite similar to that 
followed for the kernels,  fcj3, (j = 1,2,3). The symmetry conditions require that 

ayy2(x,0) = 0 for f^t) = 0, f2(t) # 0, fz(t) = 0,  and axyl(x,0) = 0 for fr{t) # 0, 

/2(t) = 0, f3(t) = 0, from which it follows that 

MM) = 0, k2i(x,t) = 0. (21a,b) 

The details of the analysis and derivation of the remaining kernels, km k22, hi and k32 

may be found in [10]. After obtaining the unknown functions /i, f2 and /3 the stresses 
and displacements in the graded medium may be determined from equations (2) and (12), 

(16) and their equivalents for nonvanishing fx and f2. 

C6 



3. Singular behavior of the solution 

Singular nature of the integral equations (11) and, consequently, the singular behavior 

of the unknown functions /1} /2 and /3 are obtained by examining the singularities of the 
kernels kij. In the problem under consideration the kernels have the form, (see, for 
example, (18)) 

/oo 

Kij{x*,t,p)dp, (i,j = 1,2,3), 
■00 

(22) 

where x* = x for i = 1,2 and x* - y for i = 3. It can be shown that [10] with the 

exception of one case that will be discussed below, the integrands K^ in (22) are bounded 

and continuous for p < oo and integrable at p = 0. The singular nature of the kernels k^ 

is, therefore, determined by examining the asymptotic behavior of Kij(x*,t, p) as p tends 
to infinity. Designating the asymptotic values of K^ by K?? and by evaluating the 

integrals 

J — c 
K%(x*,t,p)dp, (23) 

in closed form, the system of integral equations (11) may be expressed as follows: 

fd r 1    1 1 (Tyy(x,0)exp(-ix)= / + hlls(x,t) + hnf(x,t) /i(*)dt 

+ /  [hi3s(x,t) + h13f{x, t) h(t)dt + E0e0 = 0,       0 < x < d, (24a) 

fd r l   i i axy(x,0)exp( - 7&) = / + h22s{x,t) + h22f(x,t) h{t)dt 
Jo  '•""'    *^ ■* 

+ j   [h23s(x,t) + h23f(x,t)}f3(t)dt = 0, 0 < x < d,       (24b) 
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Y~^u(0,y) = J [h31s(y,t) + h31f(y,t)\f1{t)dt 

+   I   [h32s(x,t) + hz2f(x,t)jf2{t)dt 

--[ p&dt - v^Mv) + [ Wv> t)f3(t)dt = /(tf), a<y<b,   (24c) 
KJa   t-y K + l Ja 

where hijS(x*,t) are additional singular kernels (of the order 1/t) that become unbounded 

as the arguments x* and t tend to the end point zero simultaneously and are evaluated 

from (23) whereas hijf(x*,t) are bounded in their respective closed intervals and are 

evaluated (numerically) from the integrals 

r\Klj(x*,t,p)-K^(x\t,p)}dp. 
J -oo L J 

Evaluating the integrals (23), the singular kernels are found to be 

(25) 

lim hii8(x, t) = lim fi22s(x,t) 
{x,t)->0 (x,t)-»0 

1 /      1 + 2t 4t2 

ir\t + x     (t + xy     (t + x) 3   /' 0 < (t,x) <d, (26a) 

1 /      2xt2 2i3 

limh13s(x,t) = z[/ry      ox2~7?„2,    2x2 )»   °<*<fe,      0<x<d,        (26b) 
(x,t)->0 7rV(t2 + x2r        (t2 + x2Y 

1 /        2xi2 2ix2 

lim h23s(x,t) = -   r\ 2 - 2 ),   a < i < &,      0 < x < d, (26c) 
(x,t)-0 7T \     (^2 + x2y        [^2 + x2) 

1     4t2?/ 
lim h3ls(y,t) = - - 0<t<d, a<y<b, 

1 4t3 

lim h32s(y,t) — ö 
(»,iH0       Vy'  ' VT(i2 + y2)2 

,      0 < £ < d, a<y<b. 

(26d) 

(26e) 

Note that the singular kernels /ins and /122s given by (26a) are the standard expressions 
found for edge cracks in homogeneous materials [10], [11]. 
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The singular behavior of the unknown functions /i, f2 and /3 at the end points of 

their respective intervals may be determined by carrying out a function theoretic analysis 

[12], [13]. The two cases, a > 0 and a = 0 are considered separately. 

a>0 
In this case we observe that the kernels (26b-e) are bounded in their corresponding 

closed intervals and would not contribute to the singularities of the functions /i, f2 and 

/3. Expressing fc by 

f1(x) = xe>(d-x)XlF1(x), 0<x<d, (27a) 

f2(x) = xe*{d-x)X2F2(x), 0<x<d, (27b) 

h{x) = {y-af{b-yfF3{y),       a<y<b, (27c) 

and substituting in (24), the conditions of boundedness of o-yy(x, 0) and axy(x, 0) in 
0 < x < d and f{y) in a < y < b would give the following equations to determine 6\, 

Ai, 02, A2, wandß : 

ex = 0,     e2 = 0, (28a,b) 

cot(vrAi) = 0,       cot(7rA2) = 0,       (Ax = A2 = - 0.5), (29a,b) 

K — 1 K — 1 
cot(W) = rj——-, cot(irß) = -ri——, (30a,b) 

K T 1 AC + 1 

where the acceptable roots are Ai = - 0.5, A2 = - 0.5, $i(u) < 0, if o is known and is 
a sharp corner, K(u;) > 0 if a is unknown and is a point of smooth contact. Similarly, 
5R(/?) < 0 if b is a known sharp corner and 3£(/?) > 0 if & is unknown and the contact is 

smooth. 
o = 0 
In this case all kernels hijs(x*,t) become unbounded as x* —> 0 and t —> 0 

simultaneously and contribute to the singularity of the unknown functions. Again, we 
express the unknown functions in the following form: 

f1(x) = xQ(d-x)XlGl(x),        0<x<d, (31a) 

f2(x) = xa(d - x)hG2(x),        0<x<d, (31b) 

h(y) = ya(b-y)ßG3(y), 0<y<b. (31c) 

C9 



Now, by substituting (31) into (24), evaluating the singular integrals by using the complex 

function theory [12], multiplying both sides of the equations first by (d - x)~ 1 then by 

(d - x)   2 and letting x -> d, and then by (b-y) p and letting y -> 6 we find 

cot(7rAi) = 0,       cot(7rA2) = 0,       Ai = A2 

K-l 

0.5. 

C0t(7T/5) + 77 
K + l 

0. 

(32a, b) 

(33) 

Similarly, after integrating all singular kernels if we multiply both sides of (24a-c) by 

x~Q, x~a and y~a, respectively, and let x —> 0, y —> 0, we obtain the following system of 

equations to determine a: 

(34) 

where the coefficient matrix a^a) is known in closed form. Since Gj(0) ^ 0, for a 

nontrivial solution the characteristic equation to determine a is obtained by expressing 

\aij(a)\ = 0, giving 

"on(a)        0        013(a) VdGx(0) "0 
0        021(a)    a23(a) VdG2(0) = 0 

_a3i(a)    a32(a)    a33(a) _ VG3{0) L° 

X 
2a2 + 4a + 1 - cos(7ra) 

(K + l)sin(7ra) 

x (?7(4a2 + 10a + 5 + (K - l)cos(Tra) + /c(2a + 3)) + (n + l)sin(Tra)) = 0. (35) 

The eigenvalue problem (34) yields the following additional compatibility equations 
which relate C?i(0), G2(0) and G3(0) and which must be taken into consideration in the 

numerical solution of the integral equations (24): 

G,(0)v/rf = I^W-OP + °) +1°(««)(1 + °)G3(0)y», 
vy 2a2 + 4a + 1 - cos(7ra) w 

GM^d = ^MW + a^- C0S/™/2 )aG3(0)^. yj 2a2 + 4a + 1 - cos(7ra) v/ 

(36a) 

(36b) 

Note that the main results of the asymptotic analysis expressed by (28)-(30) and (32)- 

(34) are independent of //0 and the material nonhomogeneity parameter 7 and are 
dependent on the Poisson's ratio (through «) and the coefficient of friction 77 only, 
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meaning that in the coupled problem considered the stress singularities for graded and 

homogeneous materials are identical. 
The characteristic equation (35) has been verified independently by considering the 

90-degree elastic wedge under appropriate boundary conditions and by using Mellin 

transforms (see Appendix A). 
For a constant Poisson's ratio v = 0.25 Figure 2 shows the singularities associated 

with a rigid flat stamp. For a > 0 the contact stresses are given by axx(0,y) = fs(y), 

°xy(0,y) = vh(y) and referring to (27c), the singularities u and ß are obtained from 
(30). Note that in the case of sliding contact the physically relevant problem is related to 

a > 0 and 77 > 0, otherwise the contact stresses would tend to close the crack. Thus, for 

T) > 0 from Figure 2 it is seen that the trailing end of the stamp has a stronger and the 

leading end a weaker singularity than the frictionless stamp problem, that is — u > 0.5 
and — ß < 0.5. Similarly, in the smooth contact case u> > 0, ß > 0, ß > 1/2 > u and 
again the contact stresses are concentrated near the trailing end of the stamp. Figure 2 also 

shows the singularity a at a = 0 for the flat stamp obtained from (35). a is real and 
negative for 77 > 0 and a = 0 for 77 = 0. Also for 77 < 0,3£(a) > 0 and for 77 < - 0.16 a 

is complex. 

4. The contact problem for decreasing stiffness (7 < O) 

Consider the sliding contact problem for a graded medium without a surface crack and 
remote loading e0. The half-plane is thus subjected to a pair of unbalanced resultant forces 
P and 77P. In formulating the general problem in the previous sections it was stated that 
the integrands Kij(x*,t,p) in (22) are integrable around p = 0, with one exception that 
being Kzz for 7 < 0. All other integrands appear to be well-behaved at p = 0 for all 
values of 7. From (18) and (22) the infinite integral giving fc33 may be expressed as 

1    f°°T 1 
M^*) = 2^y    [Hl(p)sin(p(y -1)) + 77#2(p)cos(p(y - t))\dp. (37) 

For the homogeneous medium 7 = 0, .K33 = K^ and the kernel A;33 is evaluated in closed 
form as shown in (24c). For 7 ^ 0 the asymptotic expansion of Hi(p) and H2(p) near 

p = 0 gives 

Hi(p) = alP + a3p
3 + 0(/95), (38a) 
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8(«-l) _ 32(/c - 3)(«(1 + sign(7)) - 4) 

7(« + l)2' a3~      7
3(« + l)3(l + sign(7)) 

fli = ~—""TTI' a3 = ^7 1X3,-   .    .—~ » (38b,c) 

H2{p) = &2p
2 + 64/9

4 + 66p
6 + 0(p8), (39a) 

16(2 - K) 

72(1 + «)2 
ft2 =   0/«   —rj > (39b) 

- 64f/c2(l + sign(7)) - K(7 + 9sign(7)) + 10 + lösignfr)) 
&4 = * L    , (39c) 

74(K + l)3(l + sign(7)) 

Observing that sign(7) = 1 for 7 > 0, sign(7) = - 1 for 7 < 0, from (38) and (39) it 

is seen that Hi and H2 are well-behaved near p — 0 for 7 > 0. However, for 7 < 0 
coefficients 0,3 and 64 (and possibly that of higher powers of p) become unbounded and as 

a result £33 as expressed by (37) also becomes unbounded. Consequently, it is seen that 
for a graded medium with an exponentially decaying stiffness the contact problem is not a 
well-posed problem. Physically the problem that is analogous to 7 < 0 case is a 
homogeneous infinite strip of finite thickness under an unbalanced transverse load P (in 
thickness direction) which has no solution (see [14] for the explanation). Thus for graded 
half-planes with or without a crack, if 7 < 0 the contact problem has no solution. 

5. On the solution of integral equations 

Once the exponents Ai, A2, u>, ß and a are determined, from (27) and (31) the weight 
functions Wi and the general form of the solution of the integral equations may be 
obtained by normalizing the intervals (0,d) and (a,b) or (0,&) to be ( - 1,1), e.g. by 
defining 

fi(t) = &(r),       i = 1,2,3,     -Kr<l, (40) 

t=-(l + r),       0<t<d, -Kr<l, (41a) 

t=—^r+ ——,   a<t<b,       -Kr<l,   (a > 0),       (41b) 
Zl Zi 

t=-{l + r), 0<t<b,       -Kr<l,  (a = 0).       (41c) 
z 

The integral equations (24) with generalized Cauchy kernels would then have the form 

C12 



3      rl ö     pi 

J2     mij(s%r)^(r)dr = ^(s*), -1< s* < 1,     » = 1,2,3, (42) 
j=lJ-i 

where     z = d(l + s*)/2     for    i = 1,2,     y = (6- a)s*/2 + (6 + o)/2,     (a > 0), 
1/ = 6(1 + s*)/2, (a = 0), for i = 3. 

From (27)-(30) it is seen that for a > 0 the solution of (42) may be expressed as 
oo 

Mr) = wl{r)Y,AlnPtim{r), wx(r) = (1 - r)-1/2, (43a) 
n=0 

OO 

Mr) = w2(r)J2A2nPtim(r), w2(r) = (1 - r)-1/2, (43b) 
n=0 

oo 

&(r) = w3(r) J>3nP^)(r), «*(r) = (1 - rf{\ + rf. (43c) 
n=0 

Similarly for a = 0, from (31)-(33) and (35) we obtain 

oo 

«Mr) = w1(r)J^BlnPtl/2'a\r), Wl(r) = (1 - r)"1/2(l + r)°, (44a) 
n=0 

oo 

Mr) = w2(r)J2B2nPt1/2'a\r), w2(r) = (1 - r)~1/2(l + r)Q, (44b) 
n=0 

oo 

&(r) = wz(r)J2B3nPt1/2'a\r), w3(r) = (1 - r)^! + r)°, (44c) 
n=0 

where P« (r), - 1 < r < 1, are Jacobi polynomials. The integral equations (42) are 
solved numerically by using (43) or (44) and an appropriate collocation technique. In this 
solution the eqauilibrium condition (7) and the compatibility relations (36) are used as 
additional conditions. Also, the following property of Jacobi polynomials is used to 
regularize the singular parts of the integral equations (24), that is the terms involving the 
Cauchy kernels and the free term 

-Al " rf{\ + r)aP^-^- = cot(7r/?)(l - 5/(l + s)QP^a\s) - 
"J—1 T      S 

2(«+»r(/J)r(n + a+l)rl      , „ „ l-s\ 
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where T() is the gamma function and Ffrc+1, — n — ß — <x\l — ß; ———j  is the 

hypergeometric function. 

After solving the integral equations for /i, fo and fz the contact stresses 

<7xx(0,y) = h(y) = <h(a*), ffxy(0,y) = riMv) = #3(5*), the in-plane component of 
the surface stress ayy(0,y) (see for example (19) and (20) for the procedure to be 

followed) and the stress intensity factors at the crack tip (d, 0) may be evaluated by using 

the results. The stress intensity factors are defined by and calculated from 

k\ = lim y/2(x - d)(jyy(x, 0) 
x-xl+0 

2fl(x)     r-7-z r 8 
\hnn^^/2jd^x)^-(v(x,0+) -v(x,0-)),. (46a) 
-«f-0 K+l OX 

k2 = lim y/2(x - d)axy(x,0) - 
x—fd+0 

= -lim ^^-J2(d-x)-?-(u(x,0+)-u(x,0-)). (46b) 
x-*d-0 AC + 1 OX 

From (43), (44) and (46) it then follows that 

00 

h = - cxp^d)VdJ2^nPtl/2'0)^), (47a) 
71=0 

OO 

fca = - exp^d)Vd^2A2nPtl/2'0)(l), (47b) 
71=0 

for a > 0 and 

00 

*i = - 2aexp(7eZ)v/d5>lnPi-1/2'*)(l), (48a) 
n=0 

k2= - 2Qexp(7d)x/Z£>2nPJ-1/^)(i)) (48b) 
71=0 

for a = 0. 
The other quantity of physical interest is the in-plane stress <ryy(0, y) on the surface 

which has a bearing on crack initiation and which may be expressed as 
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3 2     pd pb 

<ryy(Q,y) = X^<Wo,y)= 12/ Mi/» *)//(*)* + / kv3(y,t)h(t)dt, 
j=l 7=1«/0 «/a 

- oo < y < oo, (49) 

where kyj(y,t), (j= 1,2,3) are known kernels corresponding to the in-plane stress 

components ayyj(0,y), (j= 1,2,3), (see, for example (19) and (20) for the in-plane 

stress due to sliding contact). Knowing the stress components axx, ayy and axy on the 

surface, at the critical location (that is, the trailing end y = a of the contact region) the 

cleavage stress aee(r, 9) may be expressed as 

<TM{r, 9) = axxsin2(9) + ayycos'2(9) - axysm(9)cos(9), (50) 

where for 9 = 8cr, aee is maximum and positive, and it can be shown that 9^ = 0 and 

{cee)cr = cw(0, a), namely, the crack initiation is perpendicular to the surface. 
It should be observed that the problem of remote loading by a constant strain 

eyy(x, ±oo) = e0 of a graded half-plane is a mode I surface crack problem and is fully 
uncoupled from the sliding contact/crack problem. As a result, the special cases of the 
previously known solutions for a graded strip [11] or bonded dissimilar graded strips [15] 
may be directly superimposed on the results given in this study to obtain the influence of 
the remote loading by constant strain. Also note that such a superposition would tend to 
remove negative mode I stress intensity factors resulting from certain values of the 
parameters 7, /c, 77 and normalized dimensions a/d and b/d. 

6. Results and discussion 

The calculated results in this study mainly consist of the contact stresses (axx(0,y), 
axy(0, y), a <y < b), stress intensity factors (k\{d), ^(d)), and the in-plane component 
of the stress on the surface ((?yy(0, y), - 00 < y < 00). The contact stresses are obtained 
directly by solving the integral equation (24) or (42) as follows: 

<rxx(0,y) = f3(y) = 03(s),    ^xy(0,y) = vh(s):    a<y<b,       — 1 < 5 < 1.(51) 

For a > 0 some sample results showing the normal component of the contact stress, 
0"xx(O, y), are given in Figure 3 for loading by a flat stamp as described in Figure 4. In this 

case the stresses are singular at the end points a and b (see equation 27c) and the 
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singularities u and ß are given by (30) and Figure 2. Note again, that for rj > 0 \u\ > \ß\, 

that is the stress concentration near the trailing end a is greater than that near the leading 

end b. Figure 3 also shows in certain respects the competing effects of the coefficient of 

friction 77, the material nonhomogeneity parameter 7 and the relative stamp dimension 

(b — a)/d on the contact stresses. 
The contact stress distribution for a = 0 is shown in Figure 5. In this case the stress 

singularities a and ß at the end points a = 0 and b are given by (35) and (33), 

respectively. Figure 2 shows that for relatively small values of (positive) 77 the stress 

singularity at b is greater than that at a = 0 (i.e., -ß> -a), hence the skewed 

distribution in Figures 5a and 5b where 77 = 0.4. On the other hand for relatively large 
values of 77, |a| > \ß\ (see Figure 2) the trend seems to be reversed and there is a greater 

stress concentration near the end a = 0 (see Figures 5c and 5d). 
Some results showing the modes I and II stress intensity factors kx and k2 at the crack 

tip x = d in a graded medium loaded by a flat stamp (Figure 4) are given in Figures 6-8. 

Figure 6 shows the results as functions of a/d for a > 0, (b - a)/d = 1 and various 
values of 7 and 77. For a frictionless stamp acting on a homogeneous medium 77,7 and the 
tangential force that would tend to open the crack are zero, the region is mostly under 
compression and, consequently, hi is negative and k2 is positive. As 77 increases the 

resultant friction force 77P also increases and gradually k\ becomes positive and k2 

negative. Figure 6 shows that the influence of not only 77, which is expected, but also of 
the material nonhomogeneity parameter 7 on the stress intensity factors could be quite 
significant. Incidentally, the solution presented in Figures 6-8 corresponding to the values 
of 77, 7 and (b - a)/d (or b/d for a = 0) for which hi < 0 is, of course, not valid due to 
crack closure. But the results can still be applicable and useful in superposition with an 
uncoupled solution resulting, for example, from remote strain loading e2/2/(x,=Foo), [11], 
[15], provided the resultant fci is positive. Otherwise, the problem needs to be formulated 
by taking into account the crack closure and determining the closure distance from the 

condition of ki = 0. 
Stress intensity factors similar to that shown in Figure 6 are also given in Figure 7, the 

only difference being in the relative stamp size, namely (6 - a)/d = 1 in Figure 6 and 

(6-a)/d = 0.1inFigure7. 
In the special case of a = 0, Figure 8 shows the stress intensity factors k\ and k2 as 

functions of the relative stamp size b/d (see Figure 4) for n = 2 and for various values of 
7 and 77. For a homogeneous medium the solution is obtained in two different ways: first 

by assuming jd = 0.0001 and using the nonhomogeneous material program and then by 
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solving the integral equations for a homogeneous medium (for which all kernels are 

known in closed form). In Figure 8, the results of the former solution are given as solid 

lines and that of the latter as closed circles. Note that for all intents and purposes the two 

sets of results are identical. 

Some examples showing the surface stresses in a graded medium in the absence of a 
crack and loaded by a sliding flat stamp are given in Figure 9 (see Figure 4, d = 0). The 

figure shows the normal component of the contact stress axx(0,y), a <y <b, and the 

in-plane stress ayy(0,y), — oo < y < oo, that is parallel to the surface. The shear 

component of the contact stress is obtained from axy(0,y) = i]axx(0,y). The results are 

given for various values of friction coefficient 77, and material nonhomogeneity parameter 
7. For 77 = 0 the results are symmetric and stresses on the surface (including ayy) have 

square-root singularities at y = a and y = b. On the other hand for 77 > 0 there is a greater 
stress concentration near the trailing end of the stamp, y = a and \u>\ > \ß\, u and ß being 
the singularities at y — a and y — 6, respectively (see Figure 2). The important conclusion 

one may draw from Figure 9 is that at the trailing end of the stamp the in-plane component 
of the stress cryy(0,y) is unbounded and and discontinuous and has a singularity of the 

order (a - yf, where - u > 1/2 (see Figure 2). This implies that y = a is a likely 
location of surface crack initiation. 

7. Some conclusions 

1. Analytically the contact problem for a graded half-plane with exponentially decaying 
stiffness is not a well-posed problem. 

2. The trailing end of the sliding rigid stamp with friction is a likely location of surface 
crack initiation due to greater stress concentration. 
3. In the medium containing a surface crack and loaded by a sliding rigid stamp, the 
mixed mode stress state at the crack tip is such that the cracks tend to be periodic and 
curve backward. 

4. In the coupled crack/contact problems for a graded medium the stress singularities a, 

ß and u are independent of the material nonhomogeneity constants 7 and fj,Q and depend 
on the friction coefficient 77 and the surface value of the Poisson's ratio (through the 
elastic constant«) only. 
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Appendix A. Mellin transform method for the derivation of the characteristic 
equation 

The characteristic equation given by (35) can also be obtained by considering a 90- 
degree homogeneous elastic wedge as shown in Figure 10 and using Mellin 
transformation. The boundary conditions of the problem are 

arff(r, 0) - r](T0e(r, 0) = 0, 0 < r < oo, (Ala) 

—ue(r, 0) = /(r), 0 < r < oo, (Alb) 

a9e{r, ir/2) = 0, 0 < r < oo, (Ale) 

<jre(r, 7T/2) = 0, 0 < r < oo. (Aid) 

In polar coordinates, following definition of the stresses in terms of a stress function x, 
identically satisfies the equilibrium equations, 

#.8) = ^, (A2b) 

Thus, the compatibility condition becomes, 

V2 V2
X(r, 6) = 0, (A3) 

where, 
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V
2 = -^ + I-i + Ij?L. (A4) 

9r2     r dr     r2 d#2 

It is also known that (see, for example, [16]), displacements can be expressed in terms of 

this biharmonic stress function x and another harmonic function <j) in the following form, 

^,,,)--2£fi+(2±!)4£fi, <A5a> 

where x(T, Ö) and 0(r, 0) are related by, 

and 0(r, 0) is a harmonic function, 

V2<Kr,0) = O. (A7) 

Mellin transform of a function f(r) and its inverse are defined by, 

/>oo 1       fc+ioo 

?(p) = /   f(ry-ldr,  f(r) = — /        f(p)r^dp. (A8a,b) 

Mellin transform of the derivative can be written as, 

provided, 

rp+m 
jm-1 

-1|^T/W = 0. (A10) 

as, r —* 0 and r —> oo for m = 1,2,3,..., n. 

Taking the Mellin transform of equations (A3), (A6) and (A7) we obtain, 

*2!M + (j? + (p+ 2)2)^i + P2(P+ 2f x(0,P) = 0, (Alia) 
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d?<KO,P) , „2 
de2 + p2<l>(e,p) = o, (Ai ib) 

i*..,+ 2)--^(V*M + 3^). (Ml.) 

Solving equations (Alia) and (Allb) and using (Alle) displacements and stresses can be 

expressed as follows, 

9 / dur     . due \ 

1      pc+ioo . . 
— /       (p + 1) [Apeipd + B(p + l)e*^-2)ö + KBQ-^+W )r-pdp, (A12a) 
7T* Jc-ioo ^ ' 

rc+ioo 

r2 

— (are + icree) = 

1       pc+ioo . 
— (p+1){Apeipe + B(p + l)e^+2)* - £e-*(p+2)f?)r-pdp. (A12b) 
Kl Jc-ioo V ' 

In equations (A12), A and S are complex constants and B is the complex conjugate of B. 

Using equations (A 12) and boundary conditions (Al) following expressions are obtained 

<T9e(r,0) _   r°.f.,   1    /'c+ioo2Q;2 + 4a + l-cos(7ra)  ra 

4/* 

1       d 

f°r/^ 1    /'c+loo2Q;
2 + 4a + l-cos7ra    rQ   , 

■U0(r,ir/2) = 

(Al 3a) 

2(K+1)öT 

p^^£r"os(TO)(a+2^;n(TO/2)(a+1)^- *■»> 
where, 

0(a) = 7^(4a2 + 10a + 5 + (K - l)cos(7ra) + «(2a + 3)) + (K + l)sin(7ra).       (A14) 

Note that -D(a) is same as the characteristic equation (35). If one performs the inversions 
in (A13) by using the theory of residues, then negative roots of D(a) give stresses that are 
singular as r approaches zero. Thus, D(a) = 0 is the characteristic equation of the 

problem. 
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Figure 1: The general description of the crack/contact problem in a graded medium. 
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Figure 4: The geometry of crack/contact problem for a flat stamp. 
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Figure (9a-f): The distribution of the contact stress axx(0,y) and the in-plane stress 
<Tyy(0,y) on the surface in a graded medium loaded by a flat stamp for K — 2 and for 
various values of 7 and 77. 
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Figure 10: The geometry of the 90-degree elastic wedge. 
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